【题目】某班有50名学生,一次考试后数学成绩ξ~N(110,102),若P(100≤ξ≤110)=0.34,则估计该班学生数学成绩在120分以上的人数为 ( )
A. 10 B. 9 C. 8 D. 7
【题目】已知一个口袋中装有n个红球(n≥1且n∈N+)和2个白球,从中有放回地连续摸三次,每次摸出2个球,若2个球颜色不同则为中奖,否则不中奖.
(1)当n=3时,设三次摸球中中奖的次数为X,求随机变量X的分布列;
(2)记三次摸球中恰有两次中奖的概率为P,求当n取多少时,P的值最大.
【题目】淘宝网卖家在某商品的所有买家中,随机选择男、女买家各50位进行调查,他们的评分等级如下表:
(1)从评分等级为(4,5]的人中随机选取2人,求恰有1人是男性的概率.
(2)现规定评分等级在[0,3]为不满意该商品,在(3,5]为满意该商品.完成下列2×2列联表,并帮助卖家判断能否在犯错误的概率不超过0.05的前提下认为是否满意该商品与性别有关.
【题目】已知a,b,c分别为△ABC内角A,B,C的对边,且ccosA﹣acosC= b.(1)其 的值;(2)若tanA,tanB,tanC成等差数列,求 的值.
【题目】某公司的生产部门调研发现,该公司第二、三季度的月用电量与月份线性相关,且数据统计如下表:
但核对电费报表时发现一组数据统计有误.
(1)请指出哪组数据有误,并说明理由;
(2)在排除有误数据后,求月用电量与月份之间的回归方程,并预测统计有误月份的用电量.(结果精确到0.1)
附注:,
【题目】已知的展开式中,前三项系数的绝对值依次成等差数列.
(1)求展开式中的常数项;
(2)求展开式中所有整式项.
【题目】设数列{an}是各项均为正数的等比数列,且a1=3,a2+a3=36.(1)求数列{an}的通项公式;(2)若数列{bn}对任意的正整数n都有 + + +…+ =2n+1,求b1+b2+b3+…+b2015的值.
【题目】如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:①f( )= ;②任意x∈[0, ],都有f( ﹣x)+f( +x)=4;③任意x1 , x2∈( ,π),且x1≠x2 , 都有 <0.其中所有正确结论的序号是 .
【题目】在四面体ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,则四面体ABCD的外界球的半径为( )A.B.2C.3D.
【题目】已知函数f(x)=x2﹣ax+b(a>0,b>0)有两个不同的零点m,n,且m,n和﹣2三个数适当排序后,即可成为等差数列,也可成为等比数列,则a+b的值为( )A.7B.8C.9D.10