5.已知M,N为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右顶点,P(异于点M,N)是双曲线上任意一点,记直线PM,PN的斜率分别为k1,k2,则当e${\;}^{{k}_{1}}$${\;}^{{k}_{2}}$-1-ln(k1k2)取最小值时,双曲线离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{2}$+1 |
20.已知数列{an}是正项等差数列,若cn=$\frac{{{a_1}+2{a_2}+3{a_3}+…+n{a_n}}}{1+2+3+…n}$,则数列{cn}也为等差数列.已知数列{bn}是正项等比数列,类比上述结论可得( )
0 246965 246973 246979 246983 246989 246991 246995 247001 247003 247009 247015 247019 247021 247025 247031 247033 247039 247043 247045 247049 247051 247055 247057 247059 247060 247061 247063 247064 247065 247067 247069 247073 247075 247079 247081 247085 247091 247093 247099 247103 247105 247109 247115 247121 247123 247129 247133 247135 247141 247145 247151 247159 266669
| A. | 若{dn}满足dn=$\frac{{{b_1}+2{b_2}+3{b_3}+…+n{b_n}}}{1+2+3+…n}$,则{dn}也是等比数列 | |
| B. | 若{dn}满足dn=$\frac{{{b_1}•2{b_2}•3{b_3}•…•n{b_n}}}{1•2•3•…•n}$,则{dn}也是等比数列 | |
| C. | 若{dn}满足${d_n}={[{b_1}•(2{b_2})•(3{b_3})•…•(n{b_n})]^{\frac{1}{1+2+…+n}}}$,则{dn}也是等比数列 | |
| D. | 若{dn}满足${d_n}={[{b_1}•{b_2}^2•{b_3}^3•…•{b_n}^n]^{\frac{1}{1+2+…+n}}}$,则{dn}也是等比数列 |