如图所示,在底面为直角梯形的四棱锥PABCD中,AD∥BC,PD⊥平面ABCD,AD=1,AB=,BC=4.(1)求证:BD⊥PC;(2)求直线AB与平面PDC所成的角;(3)设点E在棱PC上,=λ,若DE∥平面PAB,求λ的值.
如图所示,四棱锥PABCD的底面为正方形,侧棱PA⊥底面ABCD,且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.(1)求证:PB∥平面EFH;(2)求证:PD⊥平面AHF.
如图所示,已知三棱柱ABCA1B1C1,(1)若M、N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;(2)若三棱柱ABCA1B1C1的各棱长均为2,∠B1BA=∠B1BC=60°,P为线段B1B上的动点,当PA+PC最小时,求证:B1B⊥平面APC.
如图所示,四棱锥EABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD.(1)求证:AB⊥ED;(2)线段EA上是否存在点F,使DF∥平面BCE?若存在,求出;若不存在,说明理由.
如图五面体中,四边形ABCD是矩形,DA⊥平面ABEF,AB∥EF,AB=EF=2,AF=BE=2,P、Q、M分别为AE、BD、EF的中点.(1)求证:PQ∥平面BCE;(2)求证:AM⊥平面ADF.
如图,四棱锥SABCD的底面是正方形,每条侧棱的长都是底面边长的倍,P为侧棱SD上的点.(1)求证:AC⊥SD;(2)若SD⊥平面PAC,求二面角PACD的大小;(3)在(2)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.
如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB的中点.(1)求证:DE∥平面BCP.(2)求证:四边形DEFG为矩形.(3)是否存在点Q,到四面体PABC六条棱的中点的距离相等?说明理由.
如图,在平行四边形ABCD中,AB=2BC,∠ABC=120°,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,使平面A′DE⊥平面BCD,F为线段A′C的中点.(1)求证:BF∥平面A′DE;(2)设M为线段DE的中点,求直线FM与平面A′DE所成角的余弦值.
如图,在四棱锥PABCD中,底面是边长为2的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2,M、N分别为PB、PD的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角AMNQ的平面角的余弦值.
如图所示,已知两个正方形ABCD和DCEF不在同一平面内,M,N分别为AB,DF的中点.(1)若CD=2,平面ABCD⊥平面DCEF,求MN的长;(2)用反证法证明:直线ME与BN是两条异面直线.