搜索
y=3+a
x-1
(a>0且a≠1)的反函数必过定点P,则点P的坐标为( )
A.(3,1)
B.(3+a,2)
C.(4,2)
D.(4,1)
如图,AB是沿太湖南北方向道路,P为太湖中观光岛屿,Q为停车场,PQ=5.2km.某旅游团游览完岛屿后,乘游船回停车场Q,已知游船以13km/h的速度沿方位角θ的方向行驶,
sinθ=
5
13
.游船离开观光岛屿3分钟后,因事耽搁没有来得及登上游船的游客甲为了及时赶到停车地点Q与旅游团会合,立即决定租用小船先到达湖滨大道M处,然后乘出租汽车到点Q(设游客甲到达湖滨大道后能立即乘到出租车).假设游客甲乘小船行驶的方位角是α,出租汽车的速度为66km/h.
(Ⅰ)设
sinα=
4
5
,问小船的速度为多少km/h时,游客甲才能和游船同时到达点Q;
(Ⅱ)设小船速度为10km/h,请你替该游客设计小船行驶的方位角α,当角α余弦值的大小是多少时,游客甲能按计划以最短时间到达Q.
如图,设矩形ABCD(AB>AD)的周长是20,把三角形ABC沿AC折起来,AB折过去后,交DC于点F,设AB=x,则三角形ADF的面积最大时的x的值为______.
一批救灾物资随26辆汽车从某市以v千米/小时速度匀速直达灾区,已知两地公路长400千米,为安全起见,两汽车间距不得小于
(
v
20
)
2
千米,则物资全部到灾区,最少需要______小时(汽车的长度忽略不计)
某种商品的成本为5元/件,开始按8元/件销售,销售量为50件,为了获取最大利润,商家先后采取了提价与降价两种措施进行试销.经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q (件)与实际销售价x (元)满足关系Q=
39(2
x
2
-29x+107)(5<x<7)
198-6x
x-5
(7≤x<8)
(1)求总利润(利润=销售额-成本)y(元)与实际销售价x(件)的函数关系式;
(2)试问:当实际销售价为多少元时,总利润最大.
一艘轮船在航行过程中的燃料费与它的速度的立方成正比例关系,其他与速度无关的费用每小时96元,已知在速度为每小时10公里时,每小时的燃料费是6元,要使行驶1公里所需的费用总和最小,这艘轮船的速度应确定为每小时多少公里?
某公司是一家专做产品A的国内外销售的企业,每一批产品A上市销售40天全部售完,该公司对第一批产品A上市后的国内外市场的销售情况进行了跟踪调查,调查结果如图1、图2、图3所示,其中图1中的折线表示的是国内市场的日销售量与上市时间的关系;图2中的抛物线表示国外市场的日销售量与上市时间的关系;图3中的折线表示的是每件产品A的销售利润与上市时间的关系(国内外市场相同)
(1)分别写出国内市场的日销售量f(t),国外市场的日销售量g(t)与第一批产品A的上市时间t的关系式;
(2)每一批产品A上市后,问哪一天这家公司的日销售利润最大?最大是多少?
人口问题其实是许多国家的政府都要面对的问题.05年10月24日出版的《环球时报》就报道了一篇俄罗斯政府目前遭遇“人口危机”的文章.报道中引用了以下来自俄政府公布的数据:
●截至05年6月底,俄罗斯人口为1.431亿,人口密度每平方公里只有8.38人;
●04年一年俄人口就减少了76万,05年1月至5月共又减少了35.9万;
●据俄联邦安全会议预测,到2050年,俄将只有约1亿人口,比目前锐减30%.
试根据以上数据信息回答下列问题:
(1)以04年至05年5月这17个月平均每月人口减少的数据为基础,假设每月人口减少相同,预测到2050年6月底,俄罗斯的人口约为多少亿?(保留三位小数)
(2)按第(1)小题给定的预测方法,到何时俄罗斯的人口密度将低于每平方公里5人?
解关于x的不等式2
x
(2
2x
-1)<λ(2
x
-2
-x
).
函数f(x)=lg(2
x
-1)的定义域为______.
0
15270
15278
15284
15288
15294
15296
15300
15306
15308
15314
15320
15324
15326
15330
15336
15338
15344
15348
15350
15354
15356
15360
15362
15364
15365
15366
15368
15369
15370
15372
15374
15378
15380
15384
15386
15390
15396
15398
15404
15408
15410
15414
15420
15426
15428
15434
15438
15440
15446
15450
15456
15464
266669
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案