已知椭圆中心在坐标原点焦点在x轴上,离心率为,它的一个顶点为抛物线x2=4y的焦点.
(Ⅰ)求椭圆方程;
(Ⅱ)若直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程;
(Ⅲ)若斜率为1的直线交椭圆于M、N两点,求△OMN面积的最大值(O为坐标原点).
已知数列{an}中,a1=4,a2=6,且an+1=4an-3an-1(n≥2)
(1)设bn=an+1-an,求数列{bn}成等比数列.
(2)求m的值及{cn}的前n项和.
在三棱锥P-ABC中,△PAC和△PBC是边长为的等边三角形,AB=2,O是AB中点.
(Ⅰ)在棱PA上求一点M,使得OM∥平面PBC;
(Ⅱ)求证:平面PAB⊥平面ABC;
(Ⅲ)求二面角P-BC-A的余弦值.
为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序,通过预赛,选拔出甲、乙等五支队伍参加决赛.
(Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率;
(Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为X,求X的分布列和数学期望.
已知向量a=(sinx,-1),b=(cosx,-),函数f(x)=(a+b)·a-2.
(Ⅰ)求函数f(x)的最小正周期T;
(Ⅱ)已知a、b、c分别为△ABC内角A、B、C的对边,其中A为锐角,且f(A)=1,求A,b和△ABC的面积S.
给出的下列四个命题中:
①命题“x∈R,x2+1>3x”的否定是“x∈R,x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的充分不必要条件;
③设圆x2+y2+DX+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点,分别为A(x1,0),B(x2,0),C(0,y1),D(0,y2),则x1x2-y1y2=0;
④关于x的不等式|x+1|+|x-3|≥m的解集为R,则m≤4.
其中所有真命题的序号是________.
商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a,最高销售限价b(b>a)以及实数x(0<x<1)确定实际销售价格c=a+x(b-a).这里,x被称为乐观系数.经验表明,最佳乐观系数x恰好使得(c-a)是(b-c)和(b-a)的等比中项,据此可得,最佳乐观系数x的值等于________.
设F1、F2分别为双曲线的左、右焦点,若在双曲线右支上存在点P,满足PF2=F1F2,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的渐近线方程为________.
已知二次函数f(x)=ax2-4bx+1,点(a,b)是区域内的随机点,则函数y=f(x)在区间[1,+∞)上是增函数的概率为________.
对于函数f(x),若存在区间M=[a,b](其中a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的一个“稳定区间”.给出下列4个函数:
①f(x)=(x-1)2;
②f(x)=|2x-1|;
③;
④f(x)=ex.
其中存在“稳定区间”的函数有
A.
①③
B.
①②③
C.
①②③④
D.
①②