如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1-CE-C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
设a∈[-2,0],已知函数f(x)=
(Ⅰ)证明f(x)在区间(-1,1)内单调递减,在区间(1,+∞)内单调递增;
(Ⅱ)设曲线y=f(x)在点Pi(xi,f(xi))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明x1+x2+x3>.
已知首项为的等比数列{an}的前n项和为Sn(n∈N*),且-2S2,S3,4S4成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明Sn+≤(n∈N*).
设椭圆+=1(a>b>0)的左焦点为F,离心率为,过点F且与x轴垂直的直线被椭圆截得的线段长为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设A,B分别为椭圆的左右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若·+·=8,求k的值.
如图,三棱柱ABC-A1B1C1中,侧棱A1A⊥底面ABC,且各棱长均相等.D,E,F分别为棱AB,BC,A1C1的中点.
(Ⅰ)证明EF∥平面A1CD;
(Ⅱ)证明平面A1CD⊥平面A1ABB1;
(Ⅲ)求直线BC与平面A1CD所成角的正弦值.
某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.先从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:
(Ⅰ)利用上表提供的样本数据估计该批产品的一等品率;
(Ⅱ)在该样品的一等品中,随机抽取两件产品,
(1)用产品编号列出所有可能的结果;
(2)设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.
已知函数f(x)=|x-a|,其中a>1.
(Ⅰ)当a=2时,求不等式f(x)≥4=|x-4|的解集;
(Ⅱ)已知关于x的不等式{f(2x+a)-2f(x)}≤2的解集为{x|1≤x≤2},求a的值.
在直角坐标系xoy中以O为极点,x轴正半轴为极轴建立坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sin,ρ=cos(-)=2.
(Ⅰ)求C1与C2交点的极坐标;
(Ⅱ)设P为C1的圆心,Q为C1与C2交点连线的中点已知直线PQ的参数方程为(t∈R为参数),求a,b的值.
已知函数f(x)=(1+x)e-2x,g(x)=ax++1+2xcosx当x∈[0,1]时,
(Ⅰ)求证:
(Ⅱ)若f(x)≥g(x)恒成立,求实数a的取值范围.
如图,抛物线C1:x2=4y,C2:x2=-2py(p>0)点M(x0,y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O).当x0=1-时,切线MA的斜率为-.
(Ⅰ)求P的值;
(Ⅱ)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).