题目内容

函数y=log
12
(x2-4x+3)
的递减区间为
(3,+∞)
(3,+∞)
分析:在保证对数式的真数大于0的前提下,直接求出真数所对应的二次函数的增区间即可得到答案.
解答:解:由x2-4x+3>0,得x<1或x>3.
令g(x)=x2-4x+3,其对称轴方程为x=2.
所以函数t=g(x)=x2-4x+3在(3,+∞)上为增函数,
又函数y=log
1
2
t
为减函数,
所以函数y=log
1
2
(x2-4x+3)
的递减区间为(3,+∞).
故答案为(3,+∞).
点评:本题考查了复合函数的单调性,复合函数的单调性遵循同增异减的原则,是中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网