题目内容
已知函数f(x)=
与 g(x)=
.
(1)证明:对?x∈[1,+∞),f(x)<g(x)恒成立;
(2)n∈N*时,证明:
+
+
+…+
+
<
.
| 3x+1 |
| 3x+1-1 |
| 3x |
| x+1 |
(1)证明:对?x∈[1,+∞),f(x)<g(x)恒成立;
(2)n∈N*时,证明:
| 1 |
| 3+1 |
| 2 |
| 32-1 |
| 3 |
| 33+1 |
| n |
| 3n+(-1)n-1 |
| n+1 |
| 3n+1+(-1)n |
| 3 |
| 4 |
证明:(1)∵f(x)=
,外函数y=
是减函数,内函数t=3x是增函数
∴f(x)在R上递减
∵g(x)=
在[1,+∞)上是增函数
∴f(x)-g(x)在[1,+∞)是减函数
∴f(x)-g(x)≤f(1)-g(1)=-1<0
(2)
+
<
+
?
-
<
-
?
<
?
<
已证
∴
+
<
+
(n为奇数时)
∴当n为奇数时,
+
+…+
+
<(
+
)+…+(
+
)
由错位相减法可得:
+
+…+
=
-
-
<
当n为偶数时,所求
+
+…+
+
<
+…+
+
<
綜上,原不等式成立,即
+
+
+…+
+
<
| 3x+1 |
| 3x+1-1 |
| t+1 |
| 3t-1 |
∴f(x)在R上递减
∵g(x)=
| 3x |
| x+1 |
∴f(x)-g(x)在[1,+∞)是减函数
∴f(x)-g(x)≤f(1)-g(1)=-1<0
(2)
| n |
| 3n+1 |
| n+1 |
| 3n+1-1 |
| n |
| 3n |
| n+1 |
| 3n+1 |
| n |
| 3n+1 |
| n |
| 3n |
| n+1 |
| 3n+1 |
| n+1 |
| 3n+1-1 |
| -n |
| 3n+1 |
| -(n+1) |
| 3(3n+1-1) |
| 3n+1 |
| 3n+1-1 |
| 3n |
| n+1 |
∴
| n |
| 3n+(-1)n-1 |
| n+1 |
| 3n+1+(-1)n |
| n |
| 3n |
| n+1 |
| 3n+1 |
∴当n为奇数时,
| 1 |
| 3+1 |
| 2 |
| 32-1 |
| n |
| 3n+1 |
| n+1 |
| 3n+1-1 |
| 1 |
| 3 |
| 2 |
| 32 |
| n |
| 3n |
| n+1 |
| 3n+1 |
由错位相减法可得:
| 1 |
| 3 |
| 2 |
| 32 |
| n+1 |
| 3n+1 |
| 3 |
| 4 |
| 1 |
| 4 • 3n |
| n+1 |
| 2 • 3n+1 |
| 3 |
| 4 |
当n为偶数时,所求
| 1 |
| 3+1 |
| 2 |
| 32-1 |
| n |
| 3n-1 |
| n+1 |
| 3n+1+1 |
| 1 |
| 3+1 |
| n+1 |
| 3n+1+1 |
| n+2 |
| 3n+2-1 |
| 3 |
| 4 |
綜上,原不等式成立,即
| 1 |
| 3+1 |
| 2 |
| 32-1 |
| 3 |
| 33+1 |
| n |
| 3n+(-1)n-1 |
| n+1 |
| 3n+1+(-1)n |
| 3 |
| 4 |
练习册系列答案
相关题目