题目内容
14.为了得到函数$y=sin(2x+\frac{π}{3})$的图象,只要将$y=cos(\frac{π}{2}-x),(x∈R)$的图象上所有的点( )| A. | 向左平移$\frac{π}{6}$个单位长度,再把所得图象各点的横坐标伸长到原来的2倍,纵坐标不变 | |
| B. | 向左平移$\frac{π}{6}$个单位长度,再把所得图象各点的横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 | |
| C. | 向左平移$\frac{π}{3}$个单位长度,再把所得图象各点的横坐标伸长到原来的2倍,纵坐标不变 | |
| D. | 向左平移$\frac{π}{3}$个单位长度,再把所得 图象各点的横 坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变 |
分析 由条件利用诱导公式,函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答 解:将y=cos($\frac{π}{2}$-x)=sinx 的图象上所有的点 向左平移$\frac{π}{3}$个单位长度,可得y=sin(x+$\frac{π}{3}$)的图象;
再把所得 图象各点的横 坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变,可得y=sin(2x+$\frac{π}{3}$)的图象,
故选:D.
点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
19.直线$l:\left\{\begin{array}{l}x=1+tcos({α-\frac{π}{2}})\\ y=-2+tsin({α-\frac{π}{2}})\end{array}\right.$(其中t为参数,$0<α<\frac{π}{2}$)的倾斜角为( )
| A. | α | B. | $\frac{π}{2}-α$ | C. | $\frac{π}{2}+α$ | D. | $α-\frac{π}{2}$ |
4.已知函数$f(x)=\left\{\begin{array}{l}{x^2}+4x,x≥0\\ 4x-{x^2},x<0\end{array}\right.$,若f(2-a2)>f(a),则实数a的取值范围是( )
| A. | (-2,1) | B. | (-1,2) | C. | (-∞,-1)∪(2,+∞) | D. | (-∞,-2)∪(1,+∞) |