题目内容

12、下列判断:①定义在R上的函数f(x),若f(-1)=f(1),且f(-2)=f(2),则f(x)是偶函数;
②定义在R上的函数f(x)满足f(2)>f(1),则f(x)在R上不是减函数;
③定义在R上的函数f(x)在区间(-∞,0]上是减函数,在区间(0,+∞)上也是减函数,则f(x)在R上是减函数;
④既是奇函数又是偶函数的函数有且只有一个.
其中正确命题的个数是
1
个.
分析:利用函数的奇(偶)的定义和函数相等的定义判断①、④不对,根据减函数的定义判断②对、③不对.
解答:解:①、由偶函数的定义知,不满足x的任意性,故①不对;
②、由减函数的定义中“任意性”知,②对;
③、由减函数的定义中“任意性”知,两个单调区间不能并在一起,故③不对;
④、函数y=0(x∈R)既是奇函数又是偶函数,但当定义域不同时,函数也不同,故④不对.
故答案为:1.
点评:本题的考点是奇(偶)函数和减函数的定义的应用,主要考查对定义中关键词“任意性”的理解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网