题目内容

已知函数f(x)=
x2+1
ax+b
对于定义域内任意一个x都有f(-x)=-f(x),且f(1)=2.
(1)求a,b的值;
(2)用定义证明f(x)在(-∞,-1)上是增函数.
(1)因为f(-x)=-f(x)
x2+1
-ax+b
=-
x2+1
ax+b
(2分)
所以-ax+b=-ax-b
∴b=0,(4分)
又f(1)=2,所以
2
a+b
=2

∴a=1(6分)
(2)由(1)得f(x)=
x2+1
x
=x+
1
x

设x1,x2是(-∞,-1)上的任意两实数,且x1<x2
f(x1)-f(x2)=x1+
1
x1
-(x2+
1
x2
)
=x1-x2+
1
x1
-
1
x2
=
(x1-x2)(x1x2-1)
x1x2
,(9分)
因为x1<x2<-1,所以x1-x2<0,x1x2>1,x1x2-1>0,
所以f(x1)-f(x2)<0,f(x1)<f(x2)(11分)
所以f(x)在(-∞,-1)上是增函数(12分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网