题目内容
已知a>0,b<0,且a+b≠0,令a1=a,b1=b,且对任意的正整数k,当ak+bk≥0时,ak+1=
ak-
bk,bk+1=
bk;当ak+bk<0时,bk+1=-
ak+
bk,ak+1=
ak.
(1)求数列{an+bn}的通项公式;
(2)若对任意的正整数n,an+bn<0恒成立,问是否存在a,b使得{bn}为等比数列?若存在,求出a,b满足的条件;若不存在,说明理由;
(3)若对任意的正整数n,an+bn<0,且b2n=
b2n+1,求数列{bn}的通项公式.
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
(1)求数列{an+bn}的通项公式;
(2)若对任意的正整数n,an+bn<0恒成立,问是否存在a,b使得{bn}为等比数列?若存在,求出a,b满足的条件;若不存在,说明理由;
(3)若对任意的正整数n,an+bn<0,且b2n=
| 3 |
| 4 |
(1)当ak+bk≥0时,ak+1=
ak-
bk,bk+1=
bk;
∴ak+1+bk+1=
ak-
bk+
bk=
(ak+bk)
当ak+bk<0时,bk+1=-
ak+
bk,ak+1=
ak.
∴ak+1+bk+1=-
ak+
bk+
ak=
(ak+bk)
∴总有ak+1+bk+1=
(ak+bk)
∵a1=a,b1=b,
∴a1+b1=b+a
∴数列{an+bn}是以a+b为首项,以
为公比的等比数列
∴bn+an=(b+a)(
)n-1.
(2)∵an+bn<0恒成立
∴(b+a)(
)n-1<0恒成立
∴b+a<0
∵当ak+bk<0时,bk+1=-
ak+
bk,ak+1=
ak.
∴an=a•(
)n-1
∴bn=(a+b)•(
)n-1-a•(
)n-1不可能是个等比数列
故{bn}不是等比数列
(3)∵an+bn<0,bk+1=-
ak+
bk,ak+1=
ak.
∴b2n+1=-
a2n+
b2n,a2n+1=
a2n
∵b2n=
b2n+1
∴b2n+1=
b2n=-
a2n+
b2n
∴b2n=-
a2n=-
a•(
)2n-1
∴bn=-
•(
)n-1
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
∴ak+1+bk+1=
| 1 |
| 2 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
当ak+bk<0时,bk+1=-
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴ak+1+bk+1=-
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
∴总有ak+1+bk+1=
| 1 |
| 2 |
∵a1=a,b1=b,
∴a1+b1=b+a
∴数列{an+bn}是以a+b为首项,以
| 1 |
| 2 |
∴bn+an=(b+a)(
| 1 |
| 2 |
(2)∵an+bn<0恒成立
∴(b+a)(
| 1 |
| 2 |
∴b+a<0
∵当ak+bk<0时,bk+1=-
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴an=a•(
| 3 |
| 4 |
∴bn=(a+b)•(
| 1 |
| 2 |
| 3 |
| 4 |
故{bn}不是等比数列
(3)∵an+bn<0,bk+1=-
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴b2n+1=-
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∵b2n=
| 3 |
| 4 |
∴b2n+1=
| 4 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2 |
∴b2n=-
| 3 |
| 10 |
| 3 |
| 10 |
| 3 |
| 4 |
∴bn=-
| 3a |
| 10 |
| 3 |
| 4 |
练习册系列答案
相关题目