题目内容
数列{an}的前n项和Sn满足:t(Sn+1+1)=(2t+1)S n n∈N*.
(1)求证{an}是等比数列;
(2)若{an}的公比为f(t),数列{bn}满足:b1=1,bn+1=f(
),求{bn}的通项公式;
(3)定义数列{cn}为:cn=
,求{cn}的前n项和Tn,并求
Tn.
(1)求证{an}是等比数列;
(2)若{an}的公比为f(t),数列{bn}满足:b1=1,bn+1=f(
| 1 |
| bn |
(3)定义数列{cn}为:cn=
| 1 |
| bn+1bn |
| lim |
| n→∞ |
(1)由:t(Sn+1+1)=(2t+1)Sn,
得t(Sn+1)=(2t+1)Sn-1,
相减得:
=2+
,
∴{an}是等比数列.
(2)bn+1=f(
)=2+bn,
∴bn+1-bn=2,b1=1,
得bn=2n-1.
(3)cn=
=
=
(
-
)
∴Tn=
[(1-
)+(
-
)++(
-
)=
(1-
).
∴
Tn=
.(5分)
得t(Sn+1)=(2t+1)Sn-1,
相减得:
| an+1 |
| an |
| 1 |
| t |
∴{an}是等比数列.
(2)bn+1=f(
| 1 |
| bn |
∴bn+1-bn=2,b1=1,
得bn=2n-1.
(3)cn=
| 1 |
| bn+1bn |
| 1 |
| (2n+1)(2n-1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴
| lim |
| n→∞ |
| 1 |
| 2 |
练习册系列答案
相关题目