题目内容

在R上可导的函数f(x)=,当x∈(0,1)时取得极大值.当x∈(1,2)时取得极小值,则的取值范围是( )
A.
B.
C.
D.
【答案】分析:由题意知f′(x)=x2+ax+2b,结合题设条件由此可以导出的取值范围.
解答:解:∵f(x)=,∴f′(x)=x2+ax+2b,
设x2+ax+2b=(x-x1)(x-x2),(x1<x2
则x1+x2=-a,x1x2=2b,
因为函数f(x)当x∈(0,1)时取得极大值,x∈(1,2)时取得极小值
∴0<x1<1,1<x2<2,
∴1<-a<3,0<2b<2,-3<a<-1,0<b<1.∴-2<b-2<-1,-4<a-1<-2,

故选A.
点评:本题考查导数和导数的应用,解题时要注意等价命题的合理转换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网