题目内容
(2003•朝阳区一模)已知函数f(x)=x+2(
+1)(x≥0).
(Ⅰ)求f(x)的反函数,并指出其定义域;
(Ⅱ)设数列{an}(an>0)的前n项和为Sn(n∈N),若对于所有大于1的自然数n都有Sn=f(Sn-1),且a1=2,求数列{an}的通项公式;
(Ⅲ)令bn=
(n∈N),求
(b1+b2+…+bn).
| 2x |
(Ⅰ)求f(x)的反函数,并指出其定义域;
(Ⅱ)设数列{an}(an>0)的前n项和为Sn(n∈N),若对于所有大于1的自然数n都有Sn=f(Sn-1),且a1=2,求数列{an}的通项公式;
(Ⅲ)令bn=
| (an+1-an)2 |
| 2anan+1 |
| : | lim n→∞ |
分析:(Ⅰ)设y=f(x),通过解方程可求得x,然后交换变量字母,注意反函数定义域的求解;
(Ⅱ)由(Ⅰ)可得Sn=(
+
)2,易知Sn>0,从而得
=
+
,可判断数列{
}是等差数列,公差为
,
=
=
,由此可求Sn,再根据an=
,可求得an;
(Ⅲ)代入an可得bn=
-
,利用裂项相消法可求得b1+b2+…+bn,然后求极限即可;
(Ⅱ)由(Ⅰ)可得Sn=(
| Sn-1 |
| 2 |
| Sn |
| Sn-1 |
| 2 |
| Sn |
| 2 |
| S1 |
| a1 |
| 2 |
|
(Ⅲ)代入an可得bn=
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解:(I)设y=f(x),y=(
)2+2
+(
)2=(
+
)2,(x≥0).
∵x≥0,∴y≥2.∴
=
+
.∴x=(
-
)2.
∴f(x)的反函数为f-1(x)=(
-
)2,(x≥2).
(II)∵Sn=(
+
)2,(an>0),
∴Sn>0,
=
+
.即
-
=
.
所以数列{
}是等差数列,公差为
,
=
=
,
∴
=
+
(n-1).即Sn=2n2(n∈N).
当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
当n=1时,a1=2,满足an=4n-2,
∴an=4n-2(n∈N).
(III)∵bn=
=
=
=
-
,
∴b1+b2+…+bn=(1-
)+(
-
)+…+(
-
)=1-
.
∴
(b1+b2+…+bn)=
(1-
)=1.
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
∵x≥0,∴y≥2.∴
| y |
| x |
| 2 |
| y |
| 2 |
∴f(x)的反函数为f-1(x)=(
| x |
| 2 |
(II)∵Sn=(
| Sn-1 |
| 2 |
∴Sn>0,
| Sn |
| Sn-1 |
| 2 |
| Sn |
| Sn-1 |
| 2 |
所以数列{
| Sn |
| 2 |
| S1 |
| a1 |
| 2 |
∴
| Sn |
| 2 |
| 2 |
当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
当n=1时,a1=2,满足an=4n-2,
∴an=4n-2(n∈N).
(III)∵bn=
| (an+1-an)2 |
| 2anan+1 |
| (4n+2-4n+2)2 |
| 2(4n-2)(4n+2) |
| 2 |
| (2n-1)(2n+1) |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴b1+b2+…+bn=(1-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2n+1 |
∴
| lim |
| n→∞ |
| lim |
| n→∞ |
| 1 |
| 2n+1 |
点评:本题考查反函数的求法、由递推式求数列通项及数列极限,考查学生的运算求解能力.
练习册系列答案
相关题目