题目内容
设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,若对任意的x∈[-3,3],不等式f(x+t)≥2f(x),则实数t的取值范围是
- A.

- B.

- C.

- D.

B
分析:先确定t的符号,然后讨论x∈[-3,0)与x∈[0,3],代入解析式转化成二次不等式恒成立问题即可.
解答:∵对任意的x∈[-3,3],不等式f(x+t)≥2f(x)恒成立,
∴令x=0,则f(t)≥2f(0)=0
又∵f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,
∴t≥0
当x∈[-3,0)时,根据图象的平移可知不等式f(x+t)≥2f(x)显然恒成立
当x∈[0,3]时,f(x+t)≥2f(x)则(x+t)2≥2x2
即(x+t)2≥2x2在[0,3]上恒成立
∴x2-2tx-t2≤0在[0,3]上恒成立
令g(x)=x2-2tx-t2,则
解得t≥
故选B.
点评:本题主要考查了函数恒成立问题,同时考查了函数的奇偶性和单调性,也考查了运算求解的能力,属于中档题.
分析:先确定t的符号,然后讨论x∈[-3,0)与x∈[0,3],代入解析式转化成二次不等式恒成立问题即可.
解答:∵对任意的x∈[-3,3],不等式f(x+t)≥2f(x)恒成立,
∴令x=0,则f(t)≥2f(0)=0
又∵f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2,
∴t≥0
当x∈[-3,0)时,根据图象的平移可知不等式f(x+t)≥2f(x)显然恒成立
当x∈[0,3]时,f(x+t)≥2f(x)则(x+t)2≥2x2
即(x+t)2≥2x2在[0,3]上恒成立
∴x2-2tx-t2≤0在[0,3]上恒成立
令g(x)=x2-2tx-t2,则
故选B.
点评:本题主要考查了函数恒成立问题,同时考查了函数的奇偶性和单调性,也考查了运算求解的能力,属于中档题.
练习册系列答案
相关题目
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为( )
| A、f(x)=-x2+6x-8 | B、f(x)=x2-10x+24 | C、f(x)=x2-6x+8 | D、f(x)=x2-6x+8+a |