题目内容
(2012•卢湾区一模)已知数列{an},若a1=14,an+1=an-
(n∈N*),则使an•an+2<0成立的n的值是
| 2 | 3 |
21
21
.分析:由题设知数列{an}是首项为14,公差为-
的等差数列,故an=14+(n-1)×(-
)=-
n+
,由此推导出an•an+2=
n2-
n+
,由此能求出使an•an+2<0成立的n的值.
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 44 |
| 3 |
| 4 |
| 9 |
| 168 |
| 9 |
| 1760 |
| 9 |
解答:解:∵a1=14,an+1=an-
(n∈N*),
∴数列{an}是首项为14,公差为-
的等差数列,
∴an=14+(n-1)×(-
)=-
n+
,
∴an•an+2=(-
n+
)[-
(n+2)+
]
=
n2-
n+
,
∵an•an+2<0,
∴
n2-
n+
<0,
整理,得n2-42n+440<0,
解得20<n<22,
∵n∈N*,∴n=21.
故答案为:21.
| 2 |
| 3 |
∴数列{an}是首项为14,公差为-
| 2 |
| 3 |
∴an=14+(n-1)×(-
| 2 |
| 3 |
| 2 |
| 3 |
| 44 |
| 3 |
∴an•an+2=(-
| 2 |
| 3 |
| 44 |
| 3 |
| 2 |
| 3 |
| 44 |
| 3 |
=
| 4 |
| 9 |
| 168 |
| 9 |
| 1760 |
| 9 |
∵an•an+2<0,
∴
| 4 |
| 9 |
| 168 |
| 9 |
| 1760 |
| 9 |
整理,得n2-42n+440<0,
解得20<n<22,
∵n∈N*,∴n=21.
故答案为:21.
点评:本题考查数列的递推公式的应用,解题时要熟练掌握等差数列的性质和应用,注意合理地进行等价转化.
练习册系列答案
相关题目