题目内容
已知两条直线l1:x+(1+m)y+m-2=0,l2:mx+2y+8=0,当m为何值时直线l1与l2分别有下列关系?
(1)l1⊥l2;
(2)l1∥l2.
解:(1)∵两条直线l1:x+(1+m)y+m-2=0,l2:mx+2y+8=0,由两直线垂直的充要条件可得 A1A2+B1B2=0,
即 1×m+(1+m)•2=0,解得m=-
.
(2)由两直线平行的充要条件可得
,即
,
解得 m=1.
分析:(1)利用两直线垂直的充要条是 A1A2+B1B2=0,可得 1×m+(1+m)•2=0,由此求得解得m的值.
(2)由两直线平行的充要条件是
,可得
,由此求得解得m的值.
点评:本题主要考查两直线平行的性质,两直线垂直的性质,利用了两直线垂直的充要条是 A1A2+B1B2=0,两直线平行的充要条件是
,属于基础题.
即 1×m+(1+m)•2=0,解得m=-
(2)由两直线平行的充要条件可得
解得 m=1.
分析:(1)利用两直线垂直的充要条是 A1A2+B1B2=0,可得 1×m+(1+m)•2=0,由此求得解得m的值.
(2)由两直线平行的充要条件是
点评:本题主要考查两直线平行的性质,两直线垂直的性质,利用了两直线垂直的充要条是 A1A2+B1B2=0,两直线平行的充要条件是
练习册系列答案
相关题目