题目内容

已知f(x)定义在(0,+∞)上的非负可导函数,且满足xf'(x)-f(x)≥0,对于任意的正数a,b,若a<b,①af(b)≤bf(a);②af(b)≥bf(a);③af(a)≤bf(b);④af(a)≥bf(b).其中正确的是(  )
分析:分别构建函数g(x)=xf(x),h(x)=
f(x)
x
,利用xf'(x)-f(x)≥0,确定它们的单调性,从而可得结论.
解答:解:构造函数g(x)=xf(x)
∴g′(x)=xf'(x)+f(x)
∵xf'(x)-f(x)≥0,
∴g′(x)≥2f(x)≥0
∴g(x)在(0,+∞)上为单调增函数
∵a<b,
∴g(a)<g(b)
∴af(a)≤bf(b)
构造函数h(x)=
f(x)
x

h′(x)=
xf′(x)-f(x)
x2

∵xf'(x)-f(x)≥0,
∴h′(x)≥0
∴h(x)在(0,+∞)上为单调增函数
∵a<b,
∴h(a)<h(b)
f(a)
a
f(b)
b

∴af(b)≥bf(a)
∴②③正确
故选D.
点评:本题重点考查导数知识的运用,考查函数的单调性,考查利用函数的单调性,建立不等关系,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网