题目内容
已知f(x)是定义在R上的偶函数,定义在R上的奇函数g(x)=f(x-1),则f(2009)+f(2011)的值为( )
| A.-1 | B.1 | C.0 | D.无法计算 |
∵f(-x-1)=g(-x)=-g(x)=-f(x-1),又f(x)为偶函数
∴f(x+1)=f[-(x+1)]=f(-x-1),于是f(x+1)=-f(x-1)
∴f(x+1)+f(x-1)=0.
∴f(2009)+f(2011)=f+f(2010+1)=0
故选C
∴f(x+1)=f[-(x+1)]=f(-x-1),于是f(x+1)=-f(x-1)
∴f(x+1)+f(x-1)=0.
∴f(2009)+f(2011)=f+f(2010+1)=0
故选C
练习册系列答案
相关题目