题目内容
已知数列{an}满足a1=1,an+1=
且bn=a2n-2(n∈N*)
(1)求a2,a3,a4;
(2)求证:数列{bn}是等比数列,并求其通项公式;
(3)若Cn=-nbn,Sn为为数列{Cn}的前n项和,求Sn-2.
|
(1)求a2,a3,a4;
(2)求证:数列{bn}是等比数列,并求其通项公式;
(3)若Cn=-nbn,Sn为为数列{Cn}的前n项和,求Sn-2.
(1)a2=
,a3=-
,a4=
;
(2)证明:
=
=
=
=
=
,
又b1=a2-2=-
∴数列{bn}是公比为
的等比数列
bn=(-
)•(
)n-1=-(
)n
(3)由(2)知cn=n(
)n
Sn=
+2×(
)2+3×(
)3+…+n(
)n①
Sn=(
)2+2×(
)3+…+(n-1)(
)n+n(
)n+1②
①-②得:
Sn=
+(
)2+(
)3+…+(
)n-n(
)n+1
=
-n•
=1-
-
∴Sn=2-
-
=2-
∴Sn-2=-
| 3 |
| 2 |
| 5 |
| 2 |
| 7 |
| 4 |
(2)证明:
| bn+1 |
| bn |
| a2n+2-2 |
| a2n-2 |
| ||
| a2n-2 |
| ||
| a2n-2 |
=
| ||
| a2n-2 |
| 1 |
| 2 |
又b1=a2-2=-
| 1 |
| 2 |
| 1 |
| 2 |
bn=(-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)由(2)知cn=n(
| 1 |
| 2 |
Sn=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
①-②得:
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| ||||
1-
|
| 1 |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
∴Sn=2-
| 2 |
| 2n |
| n |
| 2n |
| n+2 |
| 2n |
∴Sn-2=-
| n+2 |
| 2n |
练习册系列答案
相关题目