题目内容
已知函数f(x)=cos(-
)+sin(π-
),x∈R.
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
,b=1,c=2,求△ABC的面积.
| x |
| 2 |
| x |
| 2 |
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)若△ABC的内角A,B,C的对边分别为a,b,c,若f(A)=
2
| ||
| 5 |
(Ⅰ)∵f(x)=cos(-
)+sin(π-
)=cos
+sin
=
sin(
+
)
∴函数f(x)的最小正周期T=4π,
又由2kπ-
≤
+
≤2kπ+
,∴4kπ-
≤x≤4kπ+
(k∈Z)
可得函数f(x)的单调递增区间为[4kπ-
,4kπ+
](k∈Z).…(6分)
(Ⅱ)解法一:由f(A)=
及(Ⅰ)可得sin(
+
)=
,
所以cos[2(
+
)]=1-2sin2(
+
)=-
,
即sinA=
,∴S△ABC=
bcsinA=
.…(12分)
解法二:由f(A)=
及(Ⅰ)可得sin(
+
)=
,
即sin
+cos
=
,
∴(sin
+cos
)2=
,即sinA=
∴S△ABC=
bcsinA=
.…(12分)
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| x |
| 2 |
| 2 |
| x |
| 2 |
| π |
| 4 |
∴函数f(x)的最小正周期T=4π,
又由2kπ-
| π |
| 2 |
| x |
| 2 |
| π |
| 4 |
| π |
| 2 |
| 3π |
| 2 |
| π |
| 2 |
可得函数f(x)的单调递增区间为[4kπ-
| 3π |
| 2 |
| π |
| 2 |
(Ⅱ)解法一:由f(A)=
2
| ||
| 5 |
| A |
| 2 |
| π |
| 4 |
2
| ||
| 5 |
所以cos[2(
| A |
| 2 |
| π |
| 4 |
| A |
| 2 |
| π |
| 4 |
| 3 |
| 5 |
即sinA=
| 3 |
| 5 |
| 1 |
| 2 |
| 3 |
| 5 |
解法二:由f(A)=
2
| ||
| 5 |
| A |
| 2 |
| π |
| 4 |
2
| ||
| 5 |
即sin
| A |
| 2 |
| A |
| 2 |
2
| ||
| 5 |
∴(sin
| A |
| 2 |
| A |
| 2 |
| 8 |
| 5 |
| 3 |
| 5 |
∴S△ABC=
| 1 |
| 2 |
| 3 |
| 5 |
练习册系列答案
相关题目