题目内容
已知椭圆C1:
+
=1 (a>b>0)的离心率为
,P(-2,1)是C1上一点.
(1)求椭圆C1的方程;
(2)设A、B、Q是点P分别关于x轴、y轴及坐标原点的对称点,平行于AB的直线l与C1相交于不同于P、Q的两点C、D.点C关于原点的对称点为E.证明:直线PD、PE与y轴围成的三角形是等腰三角形.
练习册系列答案
相关题目
4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,并用简单随机抽样方法抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
![]()
(1)求
的值并估计该校3000名学生中读书迷大概有多少?(将频率视为概率)
(2)根据已知条件完成下面
的列联表,并判断是否有
的把握认为“读书迷”与性别有关?
非读书迷 | 读书迷 | 合计 | |
男 | 15 | ||
女 | 45 | ||
合计 |
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的学生的阅读时间?说明理由.
附:![]()
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |