题目内容
求证:对于任意实数c,若s2=
证明:
=
[(x1-c)2+(x2-c)2+…+(xn-c)2]
=
[(x1-
+
-c)2+…+(xn-
+
-c)2]
=
[(x1-
)2+(x2-
)2+…+(xn-
)2+2(x1-
)(
-c)+…+2(xn-
)(
-c)+n(
-c)2]
=
[(x1-
)2++(xn-
)2]+
(
-c)[x1-
+x2-
+…+xn-
]+(
-c)2
=s2+
(
-c)[(x1+x2+…+xn)-n
]+(
-c)2
=s2+(
-c)2≥s2.
练习册系列答案
相关题目