题目内容

(2006•奉贤区一模)已知x、y之间满足
x2
4
+
y2
b2
=1(b>0)

(1)方程
x2
4
+
y2
b2
=1(b>0)
表示的曲线经过一点(
3
1
2
)
,求b的值
(2)动点(x,y)在曲线
x2
4
+
y2
b2
=1
(b>0)上变化,求x2+2y的最大值;
(3)由
x2
4
+
y2
b2
=1(b>0)
能否确定一个函数关系式y=f(x),如能,求解析式;如不能,再加什么条件就可使x、y之间建立函数关系,并求出解析式.
分析:(1)根据题意把点(
3
1
2
)
代入曲线的方程
x2
4
+
y2
b2
=1(b>0)
可得答案.
(2)由题意可得:x2=4(1-
y2
b2
)
,所以x2+2y=-
4
b2
(y-
b2
4
)
2
+
b2
4
+4(-b≤y≤b)
,再利用二次函数的有关性质求出其最大值.
(3)根据函数的定义可得曲线的方程不能表示函数,并且结合函数的定义若x、y满足xy<0时,x、y之间能够建立函数关系,并且根据方程也可以得到函数解析式.
解答:解:(1)由题意可得:曲线经过一点(
3
1
2
)

所以
3
2
4
+
1
4b2
=1(b>0)

解得:b=1.(4分)
(2)根据
x2
4
+
y2
b2
=1(b>0)
x2=4(1-
y2
b2
)
(5分)
所以x2+2y=4(1-
y2
b2
)+2y=-
4
b2
(y-
b2
4
)2+
b2
4
+4(-b≤y≤b)
(7分)
b2
4
≥b时,即b≥4时(x2+2y)max=2b+4

b2
4
≤b时,即0≤b≤4时(x2+2y)max=
b2
4
+4

(x2+2y)max=
2b+4,(b≥4)
b2
4
+4,(0≤b<4)
(10分)
(2)不能;                                                 (11分)
如再加条件xy<0就可使x、y之间建立函数关系,(12分)
并且解析式y=
-
1-
x2
b2
 (x>0)
1-
x2
b2
,(x<0)
.(14分)
点评:本题主要考查椭圆的标准方程与二次函数的性质,以及函数的有关定义,此题属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网