题目内容
设函数f (x) = a –|x| (a>0且a≠1)若f (2) = 4,则a =
,f (–2)与f (1)的大小关系是 .
f (–2) >f (1)
解析:
由f (2) = a –2 = 4,解得a =
,∴f (x) = 2|x| ∴f (–2) = 4>2 = f (1).
练习册系列答案
相关题目
题目内容
设函数f (x) = a –|x| (a>0且a≠1)若f (2) = 4,则a =
,f (–2)与f (1)的大小关系是 .
f (–2) >f (1)
由f (2) = a –2 = 4,解得a =
,∴f (x) = 2|x| ∴f (–2) = 4>2 = f (1).