题目内容
设{an}为公差大于0的等差数列,Sn为数列{an}的前n项的和已知S4=24,a2a3=35(1)求数列{an}的通项公式an;
(2)若bn=
| 1 |
| an.an+1 |
(3)求
| lim |
| n→∞ |
分析:(1)等差数列中,由S4=24可得a1+a4=12,
由等差数列的性质得a1+a4=a2+a3=12,a2a3=35可求出a2,a3,进而求出公差d,an
(2)利用裂项求和求出Tn
(3)由(2)可求
Tn
由等差数列的性质得a1+a4=a2+a3=12,a2a3=35可求出a2,a3,进而求出公差d,an
(2)利用裂项求和求出Tn
(3)由(2)可求
| lim |
| n→∞ |
解答:解:(1)等差数列中,由S4=24可得a1+a4=12,由等差数列的性质可得,a1+a4=a2+a3 =12,因为a2a3=35,且d>0
解得a2=5,a3=7,an=5+(n-2)×2=2n+1
(2) bn=
=
=2(
-
)
∴Tn=2(
-
+
-
+…+
-
)=2(
-
)=
(3)
Tn=
=
解得a2=5,a3=7,an=5+(n-2)×2=2n+1
(2) bn=
| 1 |
| anan+1 |
| 1 |
| (2n+1)(2n+3) |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
∴Tn=2(
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2n+1 |
| 1 |
| 2n+3 |
| 1 |
| 3 |
| 1 |
| 2n+3 |
| 4n |
| 3(2n+3) |
(3)
| lim |
| n→∞ |
| lim |
| n→∞ |
| 4n |
| 6n+9 |
| 2 |
| 3 |
点评:本题主要考查等差数列的性质,裂项求前n项和,这也是近几年高考考查的热点.
练习册系列答案
相关题目