题目内容

已知数列{an}和{bn}满足:a1=λ,an+1=其中λ为实数,n为正整数.

(Ⅰ)对任意实数λ,证明数列{an}不是等比数列;

(Ⅱ)试判断数列{bn}是否为等比数列,并证明你的结论;

(Ⅲ)设0<ab,Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有aSnb?若存在,求λ的取值范围;若不存在,说明理由.

(Ⅰ)证明:假设存在一个实数λ,使{an}是等比数列,则有a22=a1a3,即

矛盾.

所以{an}不是等比数列.

(Ⅱ)解:因为bn+1=(-1)n+1an+1-3(n-1)+21]=(-1)n+1(an-2n+14)

=(-1)n?(an-3n+21)=-bn

b1=-(λ+18),所以

当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列:

当λ≠-18时,b1=-(λ+18) ≠0,由上可知bn≠0,∴(n∈N+).

故当λ≠-18时,数列{bn}是以-(λ+18)为首项,-为公比的等比数列.

(Ⅲ)由(Ⅱ)知,当λ=-18,bn=0,Sn=0,不满足题目要求.

∴λ≠-18,故知bn= -(λ+18)?(-n-1,于是可得

Sn=-

要使a<Sn<b对任意正整数n成立,

a<-(λ+18)?[1-(-n]b(n∈N+)              

   ①

n为正奇数时,1<f(n)

f(n)的最大值为f(1)=,f(n)的最小值为f(2)= ,

于是,由①式得a<-(λ+18)<

a<b3a时,由-b-18=-3a-18,不存在实数满足题目要求;

b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网