题目内容
记数列{an}的前n项和Sn,且Sn=
n2+(1-
)n(c为常数,n∈N*),且a1,a2,a5成公比不等于1的等比数列.
(1)求证:数列{an}为等差数列,并求c的值;
(2)设bn=
,求数列{bn}的前n项和Tn.
| c |
| 2 |
| c |
| 2 |
(1)求证:数列{an}为等差数列,并求c的值;
(2)设bn=
| 1 |
| anan+1 |
分析:(1)当n=1,易求a1=S1=1,当n≥2,可求得an=Sn-Sn-1=1+(n-1)c,检验后知,an=1+(n-1)c,再由a1,a2,a5成公比不等于1的等比数列即可求得c;
(2)由(Ⅰ)知,an=2n-1,利用裂项法可求得bn=
(
-
),从而可求数列{bn}的前n项和Tn.
(2)由(Ⅰ)知,an=2n-1,利用裂项法可求得bn=
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
解答:解(1)由Sn=
n2+(1-
)n得:Sn-1=
(n-1)2+(1-
)(n-1)(n≥2),
∴当n=1,a1=S1=1;
n≥2,an=Sn-Sn-1=1+(n-1)c,
当n=1时,a1=1满足上式,
∴an=1+(n-1)c,
而a1,a2,a5成公比不等于1的等比数列,
即(1+c)2=1+4c且c≠0,
解得c=2.
(Ⅱ)由(Ⅰ)知,an=2n-1.
∴bn=
=
=
(
-
),
∴Tn=b1+b2+…+bn
=
[(1-
)+(
-
)+…+(
-
)]
=
(1-
)
=
.
| c |
| 2 |
| c |
| 2 |
| c |
| 2 |
| c |
| 2 |
∴当n=1,a1=S1=1;
n≥2,an=Sn-Sn-1=1+(n-1)c,
当n=1时,a1=1满足上式,
∴an=1+(n-1)c,
而a1,a2,a5成公比不等于1的等比数列,
即(1+c)2=1+4c且c≠0,
解得c=2.
(Ⅱ)由(Ⅰ)知,an=2n-1.
∴bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=b1+b2+…+bn
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
=
| 1 |
| 2 |
| 1 |
| 2n+1 |
=
| n |
| 2n+1 |
点评:本题考查数列的求和,着重考查等差关系的确定与错位相减法求和的应用,求得c=2是关键,考查推理与运算能力,属于中档题.
练习册系列答案
相关题目
记数列{an}的前n项和为Sn,且Sn=2n(n-1),则该数列是( )
| A、公比为2的等比数列 | ||
B、公比为
| ||
| C、公差为2的等差数列 | ||
| D、公差为4的等差数列 |