题目内容
已知数列{an}满足a1=| 1 |
| 4 |
| an-1 |
| (-1)nan-1-2 |
(1)试判断数列{
| 1 |
| an |
(2)设bn=
| 1 |
| an2 |
(3)设cn=ansin
| (2n-1)π |
| 2 |
| 4 |
| 7 |
分析:(1)根据题意,对
=(-1)n-
进行变形可得
+(-1)n=(-2)[
+(-1)n-1],从而证得结论;
(2)根据(1)求出数列an,从而求得bn,利用分组求和法即可求得结果;
(3)首先确定出数列{cn}的通项公式,利用放缩的思想将数列的每一项进行放缩,转化为特殊数列的求和问题达到证明不等式的目的.
| 1 |
| an |
| 2 |
| an-1 |
| 1 |
| an |
| 1 |
| an-1 |
(2)根据(1)求出数列an,从而求得bn,利用分组求和法即可求得结果;
(3)首先确定出数列{cn}的通项公式,利用放缩的思想将数列的每一项进行放缩,转化为特殊数列的求和问题达到证明不等式的目的.
解答:解:(1)∵
=(-1)n-
,
∴
+(-1)n=(-2)[
+(-1)n-1],
又∵
+(-1)=3,
∴数列{
+(-1)n}是首项为3,公比为-2的等比数列.
(2)依(1)的结论有
+(-1)n=3(-2)n-1,
即an=
.
bn=(3•2n-1+1)2=9•4n-1+6•2n-1+1.
Sn=9•
+6•
+n=3•4n+6•2n+n-9.
(3)∵sin
=(-1)n-1,
∴cn=
=
.
当n≥3时,
则Tn=
+
+
+…+
<
+
+
+
+…+
=
+
=
+
[1-(
)n-2]<
+
=
<
=
.
∵T1<T2<T3,
∴对任意的n∈N*,Tn<
.
| 1 |
| an |
| 2 |
| an-1 |
∴
| 1 |
| an |
| 1 |
| an-1 |
又∵
| 1 |
| a1 |
∴数列{
| 1 |
| an |
(2)依(1)的结论有
| 1 |
| an |
即an=
| (-1)n-1 |
| 3•2n-1+1 |
bn=(3•2n-1+1)2=9•4n-1+6•2n-1+1.
Sn=9•
| 1•(1-4n) |
| 1-4 |
| 1•(1-2n) |
| 1-2 |
(3)∵sin
| (2n-1)π |
| 2 |
∴cn=
| (-1)n-1 |
| 3(-2)n-1-(-1)n |
| 1 |
| 3•2n-1+1 |
当n≥3时,
则Tn=
| 1 |
| 3+1 |
| 1 |
| 3•2+1 |
| 1 |
| 3•22+1 |
| 1 |
| 3•2n-1+1 |
| 1 |
| 4 |
| 1 |
| 7 |
| 1 |
| 3•22 |
| 1 |
| 3•23 |
| 1 |
| 3•2n-1 |
| 11 |
| 28 |
| ||||
1-
|
=
| 11 |
| 28 |
| 1 |
| 6 |
| 1 |
| 2 |
| 11 |
| 28 |
| 1 |
| 6 |
| 47 |
| 84 |
| 48 |
| 84 |
| 4 |
| 7 |
∵T1<T2<T3,
∴对任意的n∈N*,Tn<
| 4 |
| 7 |
点评:本题考查数列的递推公式确定数列的思想,根据递推公式确定出数列是否满足特殊数列的定义,考查学生的转化与化归思想.第(3)问考查学生的不等式放缩的技巧与方法,关键要将数列{cn}的每一项进行放缩转化为特殊数列从而达到求和证明的目的,属难题.
练习册系列答案
相关题目