题目内容
已知函数f(x)=2sin2(
-x)+2
sin(π-x)cosx,
(1)求函数f(x)在[-
,
]上的值域;
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA.
| π |
| 2 |
| 3 |
(1)求函数f(x)在[-
| π |
| 6 |
| π |
| 3 |
(2)在△ABC中,若f(C)=2,2sinB=cos(A-C)-cos(A+C),求tanA.
分析:(1)利用三角函数的降幂公式与倍角公式,辅助角公式将函数f(x)=2sin2(
-x)+2
sin(π-x)cosx转化为:
y=2sin(2x+
),由x∈[-
,
]⇒2x+
∈[-
,
],由正弦函数的图象与性质可求得函数f(x)在[-
,
]上的值域;
(2)由f(C)=2sin(2C+
)+1=2,0<C<π⇒C=
;2sinB=cos(A-C)-cos(A+C)⇒sinB=sinAsinC
?sin(A+C)=sinAsinC,展开整理即可求得tanA.
| π |
| 2 |
| 3 |
y=2sin(2x+
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 3 |
(2)由f(C)=2sin(2C+
| π |
| 6 |
| π |
| 3 |
?sin(A+C)=sinAsinC,展开整理即可求得tanA.
解答:解:化简函数为:f(x)=2cos2x+2
sinxcosx=
sin2x+cos2x+1=2sin(2x+
)+1,
(1)当x∈[-
,
]时,2x+
∈[-
,
],
∴sin(2x+
)∈[-
, 1],2sin(2x)+1∈[0,3],即f(x)∈[0,3];
∴函数f(x)的值域为[0,3].
(2)由条件知f(C)=2sin(2C+
)+1=2,
即:sin(2C+
)=
,0<C<π,所以C=
,
又∵2sinB=cos(A-C)-cos(A+C),
∴2sinB=cosAcosC+sinAsinC-(cosAcosC-sinAsinC),
∴sinB=sinAsinC,由C=
,A+B+C=π可得:
sin(A+C)=
sinA,即sinAcosC+cosAsinC=
sinA,
所以:
tanA+
=
tanA,
解得:tanA=
.
| 3 |
| 3 |
| π |
| 6 |
(1)当x∈[-
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴sin(2x+
| π |
| 6 |
| 1 |
| 2 |
∴函数f(x)的值域为[0,3].
(2)由条件知f(C)=2sin(2C+
| π |
| 6 |
即:sin(2C+
| π |
| 6 |
| 1 |
| 2 |
| π |
| 3 |
又∵2sinB=cos(A-C)-cos(A+C),
∴2sinB=cosAcosC+sinAsinC-(cosAcosC-sinAsinC),
∴sinB=sinAsinC,由C=
| π |
| 3 |
sin(A+C)=
| ||
| 2 |
| ||
| 2 |
所以:
| 1 |
| 2 |
| ||
| 2 |
| ||
| 2 |
解得:tanA=
| ||
| 2 |
点评:本题考查复合三角函数的单调性,(1)中难点在于由x∈[-
,
]⇒2x+
∈[-
,
],再利用正弦函数的图象与性质予以解决,(2)着重考查三角函数的恒等变换及化简求值,属于中档题.
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
练习册系列答案
相关题目