题目内容

证明f(x)=3x2+2在区间[0,+∞)上是增函数.
证明:设x1,x2∈[0,+∞),且x1<x2
f(x1)-f(x2)=(3x12+2)-(3x22+2)
=3(x12-x22)=3(x1+x2)(x1-x2).
∵x1,x2∈[0,+∞),且x1<x2
∴x1+x2>0,x1-x2<0.
∴3(x1+x2)(x1-x2)<0.
即f(x1)-f(x2)<0.
f(x1)<f(x2).
所以f(x)=3x2+2在区间[0,+∞)上是增函数.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网