题目内容
(理科)(本小题满分12分)如图分别是正三棱台ABC-A1B1C1的直观图和正视图,O,O1分别是上下底面的中心,E是BC中点.
![]()
(1)求正三棱台ABC-A1B1C1的体积;
(2)求平面EA1B1与平面A1B1C1的夹角的余弦;
(3)若P是棱A1C1上一点,求CP+PB1的最小值.
(1)
;
(2)
;(3)最小值为
。
【解析】
试题分析:(1)由题意
,正三棱台高为
..2分
..4分
(2)设
分别是上下底面的中心,
是
中点,
是
中点.以
为原点,过
平行
的线为
轴建立空间直角坐标系
.
,
,
,
,
,
,
,
![]()
设平面
的一个法向量
,则
即![]()
取
,取平面
的一个法向
量
,设所求角为![]()
则
..8分
(3)将梯形
绕
旋转到
,使其与
成平角![]()
![]()
,由余弦定理得![]()
即
的最小值为
..13分
考点:本题主要考查立体几何中的体积计算、角的计算。
点评:中档题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤。利用向量则简化了证明过程,对计算能力要求高。
(理科)(本小题满分12分)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,根据现行国家标准GB3095 – 2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米 ~ 75毫克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标。从某自然保护区2012年全年每天的PM2.5监测值数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:
|
PM2.5日均值 (微克/立方米) |
[25,35] |
(35,45] |
(45,55] |
(55,65] |
(65,75] |
(75,85] |
|
频数 |
3 |
1 |
1 |
1 |
1 |
3 |
(1)从这10天的PM2.5日均值监测数据中,随机抽取3天,求恰有1天空气质量达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列;(3)以这10天的PM2.5日均值来估计一年的空气质量状况,则一年(按366天算)中平均有多少天的空气质量达到一级或二级。(精确到整数)