题目内容
已知函数f(x)=(1+cos2x)sin2x,x∈R,则f(x)是( )
| A、最小正周期为π的奇函数 | ||
B、最小正周期为
| ||
| C、最小正周期为π的偶函数 | ||
D、最小正周期为
|
分析:用二倍角公式把二倍角变为一倍角,然后同底数幂相乘公式逆用,变为二倍角正弦的平方,再次逆用二倍角公式,得到能求周期和判断奇偶性的表示式,得到结论.
解答:解:∵f(x)=(1+cos2x)sin2x=2cos2xsin2x=
sin22x=
=-
cos4x+
,
故选D.
| 1 |
| 2 |
| 1-cos4x |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
故选D.
点评:通过应用公式进行恒等变形,在不断提高学生恒等变形能力的同时,让学生初步认识形式和内容的辩证关系.掌握两角和、两角差、二倍角与半角的正弦、余弦、正切公式,并运用这些公式以及三角函数的积化和差与和差化积等公式化简三角函数式、求某些角的三角函数值,证明三角恒等式等.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|