ÌâÄ¿ÄÚÈÝ
µ±p1£¬p2£¬¡£¬pn¾ùΪÕýÊýʱ£¬³Æ
Ϊp1£¬p2£¬¡£¬pnµÄ¡°¾ùµ¹Êý¡±£®ÒÑÖªÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒÆäǰnÏîµÄ¡°¾ùµ¹Êý¡±Îª
£®
£¨¢ñ£©ÊÔÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éè
£¬ÊÔÅжϲ¢ËµÃ÷cn+1-cn£¨n¡ÊN*£©µÄ·ûºÅ£»
£¨¢ó£©ÒÑÖª
£¬¼ÇÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬ÊÔÇó
掙术
£¨¢ô£©É躯Êý
£¬ÊÇ·ñ´æÔÚ×î´óµÄʵÊý¦Ë£¬Ê¹µ±x¡Ü¦Ëʱ£¬¶ÔÓÚÒ»ÇÐÕýÕûÊýn£¬¶¼ÓÐf£¨x£©¡Ü0ºã³ÉÁ¢£¿
½â£º£¨¢ñ£©ÓÉÌâµÃ£ºa1+a2++an-1+an=n£¨2n+1£© ¢Ù£¬
a1+a2++an-1=£¨n-1£©£¨2n-1£© ¢Ú£¬
Á½Ê½Ïà¼õ£¬µÃan=4n-1£¨n¡Ý2£©£®
ÓÖ
£¬½âµÃa1=3=4¡Á1-1£¬
¡àan=4n-1£¨n¡ÊN+£©£®£¨4·Ö£©
£¨¢ò£©¡ßcn=
£¬cn+1=
£¬
¡àcn+1-cn=
£¾0£¬¼´cn+1£¾cn£®£¨7·Ö£©
£¨¢ó£©¡ßbn=tan=t4n-1£¨t£¾0£©£¬
¡àSn=b1+b2++bn=t3+t7++t4n-1£¬
µ±t=1ʱ£¬Sn=n£¬
£»£¨8·Ö£©
µ±t£¾0ÇÒt¡Ù1ʱ£¬Sn=
£¬
£®£¨10·Ö£©
×ÛÉϵã¬
£¨11·Ö£©
£¨¢ô£©ÓÉ£¨¢ò£©ÖªÊýÁÐ{cn}Êǵ¥µ÷µÝÔöÊýÁУ¬c1=1ÊÇÆäµÄ×îСÏ¼´cn¡Ýc1=1£®
¼ÙÉè´æÔÚ×î´óʵÊý£¬Ê¹µ±x¡Ü¦Ëʱ£¬¶ÔÓÚÒ»ÇÐÕýÕûÊýn£¬¶¼ÓÐf£¨x£©=-x2+4x-
¡Ü0ºã³ÉÁ¢£¬
Ôò-x2+4x¡Ü
£¨n¡ÊN+£©£®
Ö»Ðè-x2+4x¡Üc1=1£¬¼´x2-4x+1¡Ý0£®
½âÖ®µÃx¡Ý2+
»òx¡Ü2-
£®
ÓÚÊÇ£¬¿ÉÈ¡¦Ë=2-
£¨14·Ö£©
·ÖÎö£º£¨¢ñ£©ÏÈÀûÓÃÌõ¼þÇóµÃa1+a2++an-1+an=n£¨2n+1£©ºÍa1+a2++an-1=£¨n-1£©£¨2n-1£©£¬Á½Ê½×÷²î¾Í¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£¨×¢Òâ¼ìÑén=1ÊÇ·ñ³ÉÁ¢£©£»
£¨¢ò£©ÀûÓà £¨¢ñ£©ÇóµÃµÄÊýÁÐ{an}µÄͨÏʽ´úÈë¼´¿ÉÇó³öcn+1-cnÔÙÀûÓú¯ÊýµÄµ¥µ÷ÐԾͿÉÅжϳöcn+1-cn£¨n¡ÊN*£©µÄ·ûºÅ£»
£¨¢ó£©ÀûÓà £¨¢ñ£©ÇóµÃµÄÊýÁÐ{an}µÄͨÏʽ´úÈë¼´¿ÉÇó³öÊýÁÐ{bn}µÄͨÏʽ£¬ÔٶԵȱÈÊýÁÐ{bn}·Ö¹«±ÈµÈÓÚ1ºÍ²»µÈÓÚ1Á½ÖÖÇé¿ö·Ö±ðÇóºÍ¼´¿ÉÕÒµ½
掙术
£¨¢ô£©ÓÉ£¨¢ò£©ÖªÊýÁÐ{cn}Êǵ¥µ÷µÝÔöÊýÁУ¬c1=1ÊÇÆä×îСÏËùÒÔf£¨x£©¡Ü0ºã³ÉÁ¢¿ÉÒÔת»¯Îª-x2+4x¡Üc1=1£¬ÔٽⲻµÈʽ¾Í¿ÉÕÒµ½¶ÔÓ¦µÄ×î´óµÄʵÊý¦Ë£®
µãÆÀ£º±¾ÌâÊǶÔÊýÁÐ֪ʶ£®º¯Êý֪ʶÒÔ¼°ºã³ÉÁ¢ÎÊÌâµÄ×ۺϿ¼²é£®ÔÚÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½Ê±£¬Ò»¶¨Òª¿´¹«±ÈµÄȡֵ£¬ÔÚ²»È·¶¨µÄÇé¿öÏ£¬Òª·ÖÇå¿öÌÖÂÛ£®
a1+a2++an-1=£¨n-1£©£¨2n-1£© ¢Ú£¬
Á½Ê½Ïà¼õ£¬µÃan=4n-1£¨n¡Ý2£©£®
ÓÖ
¡àan=4n-1£¨n¡ÊN+£©£®£¨4·Ö£©
£¨¢ò£©¡ßcn=
¡àcn+1-cn=
£¨¢ó£©¡ßbn=tan=t4n-1£¨t£¾0£©£¬
¡àSn=b1+b2++bn=t3+t7++t4n-1£¬
µ±t=1ʱ£¬Sn=n£¬
µ±t£¾0ÇÒt¡Ù1ʱ£¬Sn=
×ÛÉϵã¬
£¨¢ô£©ÓÉ£¨¢ò£©ÖªÊýÁÐ{cn}Êǵ¥µ÷µÝÔöÊýÁУ¬c1=1ÊÇÆäµÄ×îСÏ¼´cn¡Ýc1=1£®
¼ÙÉè´æÔÚ×î´óʵÊý£¬Ê¹µ±x¡Ü¦Ëʱ£¬¶ÔÓÚÒ»ÇÐÕýÕûÊýn£¬¶¼ÓÐf£¨x£©=-x2+4x-
Ôò-x2+4x¡Ü
Ö»Ðè-x2+4x¡Üc1=1£¬¼´x2-4x+1¡Ý0£®
½âÖ®µÃx¡Ý2+
ÓÚÊÇ£¬¿ÉÈ¡¦Ë=2-
·ÖÎö£º£¨¢ñ£©ÏÈÀûÓÃÌõ¼þÇóµÃa1+a2++an-1+an=n£¨2n+1£©ºÍa1+a2++an-1=£¨n-1£©£¨2n-1£©£¬Á½Ê½×÷²î¾Í¿ÉÇó³öÊýÁÐ{an}µÄͨÏʽ£¨×¢Òâ¼ìÑén=1ÊÇ·ñ³ÉÁ¢£©£»
£¨¢ò£©ÀûÓà £¨¢ñ£©ÇóµÃµÄÊýÁÐ{an}µÄͨÏʽ´úÈë¼´¿ÉÇó³öcn+1-cnÔÙÀûÓú¯ÊýµÄµ¥µ÷ÐԾͿÉÅжϳöcn+1-cn£¨n¡ÊN*£©µÄ·ûºÅ£»
£¨¢ó£©ÀûÓà £¨¢ñ£©ÇóµÃµÄÊýÁÐ{an}µÄͨÏʽ´úÈë¼´¿ÉÇó³öÊýÁÐ{bn}µÄͨÏʽ£¬ÔٶԵȱÈÊýÁÐ{bn}·Ö¹«±ÈµÈÓÚ1ºÍ²»µÈÓÚ1Á½ÖÖÇé¿ö·Ö±ðÇóºÍ¼´¿ÉÕÒµ½
£¨¢ô£©ÓÉ£¨¢ò£©ÖªÊýÁÐ{cn}Êǵ¥µ÷µÝÔöÊýÁУ¬c1=1ÊÇÆä×îСÏËùÒÔf£¨x£©¡Ü0ºã³ÉÁ¢¿ÉÒÔת»¯Îª-x2+4x¡Üc1=1£¬ÔٽⲻµÈʽ¾Í¿ÉÕÒµ½¶ÔÓ¦µÄ×î´óµÄʵÊý¦Ë£®
µãÆÀ£º±¾ÌâÊǶÔÊýÁÐ֪ʶ£®º¯Êý֪ʶÒÔ¼°ºã³ÉÁ¢ÎÊÌâµÄ×ۺϿ¼²é£®ÔÚÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½Ê±£¬Ò»¶¨Òª¿´¹«±ÈµÄȡֵ£¬ÔÚ²»È·¶¨µÄÇé¿öÏ£¬Òª·ÖÇå¿öÌÖÂÛ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿