题目内容
设指数函数f(x)=ax(a>0且a≠1),则下列等式不正确的是( )
| A.f(x+y)=f(x)•f(y) | B.f[(xy)n]=[f(x)]n•[f(y)]n | ||
C.f(x-y)=
| D.f(nx)=[f(x)]n |
∵f(x)=ax
∴f(x+y)=ax+y=ax•ay=f(x)•f(y),故A正确;
f[(xy)n]=a(xy)n=axnyn≠[f(x)]n•[f(y)]n=axn•ayn,故B错误;
f(x-y)=ax-y=
=
,故C正确;
f(nx)=anx=(ax)n=[f(x)]n,故D正确;
故选B
∴f(x+y)=ax+y=ax•ay=f(x)•f(y),故A正确;
f[(xy)n]=a(xy)n=axnyn≠[f(x)]n•[f(y)]n=axn•ayn,故B错误;
f(x-y)=ax-y=
| ax |
| ay |
| f(x) |
| f(y) |
f(nx)=anx=(ax)n=[f(x)]n,故D正确;
故选B
练习册系列答案
相关题目
设指数函数f(x)=ax(a>0且a≠1),则下列等式不正确的是( )
| A、f(x+y)=f(x)•f(y) | ||
| B、f[(xy)n]=[f(x)]n•[f(y)]n | ||
C、f(x-y)=
| ||
| D、f(nx)=[f(x)]n |