题目内容
已知椭圆| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
分析:设M(x0,y0),A(x1,y1),B(-x1,-y1),k1=
,k2=
,再由点差法可知k1•k2=
•
=
=-
=-
=-
.
| y0-y1 |
| x0-x1 |
| y0-y2 |
| x0-x2 |
| y0-y1 |
| x0-x1 |
| y0+y1 |
| x0+x1 |
| y02-y12 |
| x02-x12 |
| b2 |
| a2 |
| 3k2 |
| 9k2 |
| 1 |
| 3 |
解答:解:∵椭圆
+
=1(a>b>0)的离心率是
,
∴c=
k,a=3k,b=
k,
设M(x0,y0),A(x1,y1),B(-x1,-y1),
k1=
,k2=
,
把M和A分别代入椭圆
+
=1,并相减,整理得
=-
=-
=-
.
∴k1•k2=
•
=
=-
=-
=-
.
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 3 |
∴c=
| 6 |
| 3 |
设M(x0,y0),A(x1,y1),B(-x1,-y1),
k1=
| y0-y1 |
| x0-x1 |
| y0-y2 |
| x0-x2 |
把M和A分别代入椭圆
| x2 |
| a2 |
| y2 |
| b2 |
| y02-y12 |
| x02-x12 |
| b2 |
| a2 |
| 3k2 |
| 9k2 |
| 1 |
| 3 |
∴k1•k2=
| y0-y1 |
| x0-x1 |
| y0+y1 |
| x0+x1 |
| y02-y12 |
| x02-x12 |
| b2 |
| a2 |
| 3k2 |
| 9k2 |
| 1 |
| 3 |
点评:本题考查椭圆的性质和应用,解题时要注意挖掘隐含条件,注意点差法的运用.
练习册系列答案
相关题目