题目内容

由0、1、2、3、4、5、6这7个数字组成没有重复数字的三位数中,能被5整除的数的概率为
11
36
11
36
分析:分所选数字含0和不含0两种情况,分别计算组成数字的个数和能被5整除的数字个数,代入概率公式,可得答案.
解答:解:若选取的数字不含0,即
从1、2、3、4、5、6任取三个组成的无重复三位数共有
A
3
6
=120种
其中能被5整除的数的个位数字一定为5,共有
A
2
5
=20种
若选取的数字含0,即
从1、2、3、4、5、6任取两个与0组成的无重复三位数共有
C
2
6
×
C
1
2
×
A
2
2
=60种
其中能被5整除的数的个位数字一定为5或0,共有
A
2
6
+
C
1
5
=35种
故由0、1、2、3、4、5、6这7个数字组成没有重复数字的三位数中,能被5整除的数的概率P=
20+35
120+60
=
11
36

故答案
11
36
点评:本题考查的知识点是古典概型及其概率计算公式,其中根据排列组合法求出所有数字个数和能被5整除的数字个数是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网