题目内容
| 3 |
(Ⅰ)求证:DE⊥平面BB1C1C;
(Ⅱ)求三棱锥C-BC1D的体积.
分析:(I)取BC的中点F,连结AF,可得AF∥DE,可证AF⊥平面BB1C1C,从而证DE⊥平面BB1C1C.
(II)由(Ⅰ)知,DE是三棱锥C-BC1D底面BCC1上的高,求出AF即是DE的大小,求出S△BCC1,计算出三棱锥C-BC1D的体积.
(II)由(Ⅰ)知,DE是三棱锥C-BC1D底面BCC1上的高,求出AF即是DE的大小,求出S△BCC1,计算出三棱锥C-BC1D的体积.
解答:
解:(I)证明:如图
取BC,B1C1的中点F、G,连结FG、AF,∴AF⊥BC,
又AA1⊥平面ABC,BB1∥AA1
∴BB1⊥平面ABC,∴BB1⊥AF;
B1B∩BC=B,
∴AF⊥平面BB1C1C,
又AD∥EF,且AD=EF=
AA1,∴DE∥AF
∴DE⊥平面BB1C1C.
(II)由(Ⅰ)知,DE⊥平面BB1C1C,∴DE是三棱锥C-BC1D底面BCC1上的高,
又DE∥AF,且DE=AF=
AB=
×2=
,
S△BCC1=
×BC×CC1=
×2×2
=2
;
∴三棱锥C-BC1D的体积为:
V三棱锥C-BC1C=
×S△ABC×DE=
×2
×
=2.
取BC,B1C1的中点F、G,连结FG、AF,∴AF⊥BC,
又AA1⊥平面ABC,BB1∥AA1
∴BB1⊥平面ABC,∴BB1⊥AF;
B1B∩BC=B,
∴AF⊥平面BB1C1C,
又AD∥EF,且AD=EF=
| 1 |
| 2 |
∴DE⊥平面BB1C1C.
(II)由(Ⅰ)知,DE⊥平面BB1C1C,∴DE是三棱锥C-BC1D底面BCC1上的高,
又DE∥AF,且DE=AF=
| ||
| 2 |
| ||
| 2 |
| 3 |
S△BCC1=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
∴三棱锥C-BC1D的体积为:
V三棱锥C-BC1C=
| 1 |
| 3 |
| 1 |
| 3 |
| 3 |
| 3 |
点评:本题考查了空间中的直线与平面垂直的判定与三棱锥体积的计算问题,是中档题.
练习册系列答案
相关题目
| A、3:2 | B、7:5 | C、8:5 | D、9:5 |