题目内容

设an为等差数列,bn为等比数列,且a1=0,若cn=an+bn,且c1=1,c2=1,c3=2.
(1)求an的公差d和bn的公比q;     (2)求数列cn的前10项和.
(1)∵c1=1,a1=0,c1=a1+b1,∴b1=1(1′)
          由c2=1,c3=2得
q+d=1
q2+2d=2
(4′)
解得:
q=2
d=-1
q=0
d=1
(舍)(6′)
∴an的公差为2,bn的公比为-1.(8′)
(2)S10=c1+c2+c3+…+c10═(a1+a2+…+a10)+(b1+b2+…+b10)(10′)
=10×0+
10×9
2
•(-1)+
1•(1-210)
1-2
=978(14′)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网