题目内容
已知在等差数列{an}中,a3=4前7项和等于35,数列{bn}中,点(bn,sn)在直线x+2y-2=0上,其中sn是数列{bn}的前n项和(n∈N*).
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)设cn=an•bn•Tn为数列{cn}的前n项和,求Tn并证明;
≤Tn<
.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列;
(3)设cn=an•bn•Tn为数列{cn}的前n项和,求Tn并证明;
| 4 |
| 3 |
| 5 |
| 2 |
分析:(1)假设数列{an}的首项与公差为d,利用a3=4,前7项和等于35,可建立方程组,从而可求数列{an}的通项公式;
(2)根据点(bn.sn)在直线x+2y-2=0上,可得bn+2sn-2=0,再写一式bn-1+2sn-1-2=0(n≥2),作差化简可得bn=
bn-1(n≥2),从而可知数列{bn}是等比数列;
(3)由(2)知,bn=
•(
)n-1=
,从而cn=an•bn=(n+1)•
,Tn=
+
+
+…+
,同乘
Tn=
+
+
+…+
+
,作差,进而可求Tn从而可证
≤Tn<
.
(2)根据点(bn.sn)在直线x+2y-2=0上,可得bn+2sn-2=0,再写一式bn-1+2sn-1-2=0(n≥2),作差化简可得bn=
| 1 |
| 3 |
(3)由(2)知,bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
| 2 |
| 3n |
| 2×2 |
| 3 |
| 2×3 |
| 32 |
| 2×4 |
| 33 |
| 2(n+1) |
| 3n |
| 1 |
| 3 |
| 1 |
| 3 |
| 2×2 |
| 32 |
| 2×3 |
| 33 |
| 2×4 |
| 34 |
| 2n |
| 3n |
| 2(n+1) |
| 3n+1 |
| 4 |
| 3 |
| 5 |
| 2 |
解答:解:(1)设数列{an}的公差为d,则由题意知:
得
∴an=a1+(n-1)d=2+n-1=n+1…(3分)
(2)∵点(bn.sn)在直线x+2y-2=0上
∴bn+2sn-2=0----①,bn-1+2sn-1-2=0(n≥2)-----②
①-②得bn-bn-1+2bn=0,∴bn=
bn-1(n≥2),…(6分)
又当n=1时,b1=-
b1+1∴b1=
≠0
∴数列{bn}是以
为首项,
为公比的等比数列.…(9分)
(3)由(2)知,bn=
•(
)n-1=
,
∴cn=an•bn=(n+1)•
Tn=
+
+
+…+
-----------③
Tn=
+
+
+…+
+
------④
③-④得,
Tn=
+
+
+…+
-
∴Tn=2+
+
+
+…+
-
=2+
-
=2+
(1-
)-
=
-
…(14分)
Tn=
-
<
由③知Tn的最小值是T1=
∴
≤Tn<
…(16分)
|
得
|
(2)∵点(bn.sn)在直线x+2y-2=0上
∴bn+2sn-2=0----①,bn-1+2sn-1-2=0(n≥2)-----②
①-②得bn-bn-1+2bn=0,∴bn=
| 1 |
| 3 |
又当n=1时,b1=-
| 1 |
| 2 |
| 2 |
| 3 |
∴数列{bn}是以
| 2 |
| 3 |
| 1 |
| 3 |
(3)由(2)知,bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
∴cn=an•bn=(n+1)•
| 2 |
| 3n |
| 2×2 |
| 3 |
| 2×3 |
| 32 |
| 2×4 |
| 33 |
| 2(n+1) |
| 3n |
| 1 |
| 3 |
| 2×2 |
| 32 |
| 2×3 |
| 33 |
| 2×4 |
| 34 |
| 2n |
| 3n |
| 2(n+1) |
| 3n+1 |
③-④得,
| 2 |
| 3 |
| 2×2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 33 |
| 2 |
| 3n |
| 2(n+1) |
| 3n+1 |
∴Tn=2+
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n-1 |
| (n+1) |
| 3n |
| ||||
1-
|
| n+1 |
| 3n |
=2+
| 1 |
| 2 |
| 1 |
| 3n-1 |
| n+1 |
| 3n |
| 5 |
| 2 |
| 2n+5 |
| 2×3n |
Tn=
| 5 |
| 2 |
| 2n+5 |
| 2×3n |
| 5 |
| 2 |
| 4 |
| 3 |
∴
| 4 |
| 3 |
| 5 |
| 2 |
点评:本题以等差数列为载体,考查等差数列的通项与前n项和,考查等比数列,考查错位相减法求和.
练习册系列答案
相关题目
已知在等差数列{an}中,a1=120,d=-4,若Sn≤an(n≥2),则n的最小值为( )
| A、60 | B、62 | C、70 | D、72 |
已知在等差数列{an}中3a2=7a7,a1>0,则下列说法正确的是( )
| A、a11>0 | B、S10为Sn的最大值 | C、d>0 | D、S4>S16 |