题目内容

求曲线y=-x3+x2+2x与x轴所围成的图形的面积.
令y=-x3+x2+2x=0得:
函数y=-x3+x2+2x的零点:
x1=-1,x2=0,x3=2.…(4分)
又判断出在(-1,0)内,图形在x轴下方,
在(0,2)内,图形在x轴上方,
所以所求面积为:
A=-
0-1
(-x3+x2+2x)dx
+
20
(-x3+x2+2x)dx

=(
1
4
x4-
1
3
x3-x2)|-10+(-
1
4
x4+
1
3
x3+x2)|02
=
37
12
…(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网