题目内容
20.矩阵M=$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$有属于特征值λ1=8的一个特征向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$,及属于特征值λ2=-3的一个特征向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$.(1)对于向量$\overrightarrow{α}=[\begin{array}{l}{3}\\{8}\end{array}]$,记做$\overrightarrow{α}={e}_{1}-3{e}_{2}$,利用这一表达式计算${M}^{3}\overrightarrow{α}$,${M}^{50}\overrightarrow{α}$;
(2)对于向量$\overrightarrow{β}=[\begin{array}{l}{8}\\{3}\end{array}]$,计算 ${M}^{5}\overrightarrow{β}$,${M}^{100}\overrightarrow{β}$.
分析 本题(1)可以将向量$\overrightarrow{α}=[\begin{array}{l}{3}\\{8}\end{array}]$转化为向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$、向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$的线性组合,再利用特征值的计算规律,求出算${M}^{3}\overrightarrow{α}$,${M}^{50}\overrightarrow{α}$;(2)类似(1)的计算,计算 ${M}^{5}\overrightarrow{β}$,${M}^{100}\overrightarrow{β}$,得到本题结论.
解答 解:(1)∵矩阵M=$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$有属于特征值λ1=8的一个特征向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$,及属于特征值λ2=-3的一个特征向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$×$[\begin{array}{l}{6}\\{5}\end{array}]$=8×$[\begin{array}{l}{6}\\{5}\end{array}]$,$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$×$[\begin{array}{l}{1}\\{-1}\end{array}]$=-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$.
∵$[\begin{array}{l}{3}\\{8}\end{array}]$=$[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴${M}^{3}\overrightarrow{α}$=M3($[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M3×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×M3×$[\begin{array}{l}{1}\\{-1}\end{array}]$=83×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×(-3)3×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{3}+{3}^{4}}\\{5×{8}^{3}-{3}^{4}}\end{array}]$=$[\begin{array}{l}{3153}\\{2479}\end{array}]$.
${M}^{50}\overrightarrow{α}$=M50($[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M50×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×M50×$[\begin{array}{l}{1}\\{-1}\end{array}]$=850×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×(-3)50×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{50}+(-3)^{51}}\\{5×{8}^{50}-(-3)^{51}}\end{array}]$.
(2)∵$[\begin{array}{l}{8}\\{3}\end{array}]$=$[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴${M}^{5}\overrightarrow{β}$=M5($[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M5×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×M5×$[\begin{array}{l}{1}\\{-1}\end{array}]$=85×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×(-3)5×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{196122}\\{164326}\end{array}]$.
${M}^{100}\overrightarrow{β}$=M100($[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M100×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×M100×$[\begin{array}{l}{1}\\{-1}\end{array}]$=8100×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×(-3)100×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{100}+2×{3}^{100}}\\{5×{8}^{100}-2×{3}^{100}}\end{array}]$.
点评 本题考查的是利用矩阵的特征值和特征向量,进行矩阵与向量的积的运算,本题难度不大,属于基础题.