题目内容

(2009•聊城二模)数列{an}中,a1=3,a2=7,当n∈N*时,an+2是anan+1的个位数,则数列{an}的第2010项是(  )
分析:由题意逐次求出a3,a4,…a7,a8,可以得到数列{an}的值以6为循环,由此可以求出数列{an}的第2010项.
解答:解:因为a1=3,a2=7,
所以a1a2=3×7=21,故a3=1,
a2a3=7×1=7,故a4=7,
a3a4=1×7=7,故a5=7,
a4a5=7×7=49,故a6=9,
a5a6=7×9=63,故a7=3,
a6a7=9×3=27,故a8=7,
故数列{an}的值以6为循环,即a(n+6k)=an(k为整数).
∴a2010=a(6×334+6)=a6=9.
故选C.
点评:本题考查了数列的概念及简单表示法,考查了学生探究问题的能力,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网