题目内容

已知直三棱柱ABCA1B1C1中,AB=4,AC=AA1=2,∠CAB=60°.

(1)求证:A1CB1C1;

(2)求点B1到平面A1BC的距离;

(3)求二面角C1-A1B-C的大小.

解法一:(1)在△ABC中,BC2=AB2+AC2-2AB·AC·cos∠BAC=16+4-16cos60°=12,?

BC=2,AC2+BC2=AB2.?

∴∠ACB=90°,即BCAC.                                                                                       ?

由直三棱柱性质知:平面ACC1A1⊥平面ABC.?

BC⊥平面ACC1A1.

BCA1C.?

BCB1C1,∴B1C1A1C.                                                                                     ?

(2)∵BCB1C1,BC平面ABC,

B1C1∥平面A1CB.?

B1点到平面A1CB的距离等于点C1到平面A1CB的距离.                                      ?

设点B1到平面A1CB的距离为h,则?

V=V=V.?

h==

==.                                                                                                  

(3)连结AC1,交A1CO,过OODA1BD,连结C1D.?

由(1)BC⊥平面ACC1A1,得平面BCA1⊥平面ACC1A1.?

由正方形ACC1A1AC1A1C,

C1A⊥平面A1BC.?

ODC1D在平面A1BC上的射影.?

C1DA1B(三垂线定理).?

∴∠ODC1是二面角C1-A1B-C的平面角.                                                                  ?

在△A1BC中,A1B=2,BC=2,A1C=2,A1O=.??

,得OD==,?

∴tan∠ODC1===.?

∴二面角C1A1BC的大小是Arctan.                                                                  ?

解法二:先证∠ACB=90°,然后以C为原点,分别以CA,CB,CC1x轴,y轴,z轴建立空间直角坐标系.(略).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网