ÌâÄ¿ÄÚÈÝ
¶¨Ò壺Èô¶Ô¶¨ÒåÓòDÄÚµÄÈÎÒâÁ½¸öx1£¬x2£¨x1¡Ùx2£©¾ùÓÐ|f£¨x1£©-f£¨x2£©|¡Ü|x1-x2|³ÉÁ¢£¬Ôò³Æº¯Êýy=f£¨x£©ÊÇDÉϵġ°Æ½»ºº¯Êý¡±£®
£¨1£©h£¨x£©=x2-xÊÇ·ñΪRÉϵġ°Æ½»ºº¯Êý¡±£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÊÔÖ¤Ã÷¶Ô?k¡ÊR£¬f£¨x£©=x2+kx+1¶¼²»ÊÇÇø¼ä£¨-1£¬1£©ÉÏµÄÆ½»ºº¯Êý£»
£¨3£©ÈôÊýÁÐ{xn}£¬?n¡ÊN*ÖУ¬×ÜÓÐ|xn+1-xn|¡Ü
£¬Èôy=sinxΪ¡°Æ½»ºº¯Êý¡±£¬ÇóÖ¤|yn+1-y1|£¼1£®£®
£¨1£©½â£ºÈ¡x1=3£¬x2=1£¬Ôò|h£¨x1£©-h£¨x2£©|=4£¾|x1-x2|£¬Òò´Ëh£¨x£©=x2-x²»ÊÇRÉϵġ°Æ½»ºº¯Êý¡±£»
£¨2£©Ö¤Ã÷£ºÇø¼ä£¨-1£¬1£©ÉϵÄÈÎÒâÁ½¸öx1£¬x2£¬|f£¨x1£©-f£¨x2£©|=|x1+x2+k||x1-x2|£¬
Èôk¡Ý0£¬Ôòµ±x1£¬x2¡Ê£¨
£¬1£©Ê±£¬x1+x2+k£¾1£¬´Ó¶ø|f£¨x1£©-f£¨x2£©|£¾|x1-x2|£»
Èôk£¼0£¬Ôòµ±x1£¬x2¡Ê£¨-1£¬-
£©Ê±£¬x1+x2+k£¼-1£¬¡à|x1+x2+k|£¾1£¬´Ó¶ø|f£¨x1£©-f£¨x2£©|£¾|x1-x2|£¬
¡à?k¡ÊR£¬f£¨x£©=x2+kx+1¶¼²»ÊÇÇø¼ä£¨-1£¬1£©ÉÏµÄÆ½»ºº¯Êý£»
£¨3£©Ö¤Ã÷£º¡ßy=sinxÊÇRÉϵġ°Æ½»ºº¯Êý¡±£¬
¡à|yn+1-yn+1|¡Ü|xn+1-xn|¡Ü
£¼
£¨
£©
¡à|yn+1-y1|£¼
[£¨
£©+£¨
£©+¡+£¨1-
£©]=
£¼
¡à|yn+1-y1|£¼1£®
·ÖÎö£º£¨1£©È¡x1=3£¬x2=1£¬Ôò|h£¨x1£©-h£¨x2£©|=4£¾|x1-x2|£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©Çø¼ä£¨-1£¬1£©ÉϵÄÈÎÒâÁ½¸öx1£¬x2£¬|f£¨x1£©-f£¨x2£©|=|x1+x2+k||x1-x2|£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÀûÓÃy=sinxÊÇRÉϵġ°Æ½»ºº¯Êý¡±£¬¿ÉµÃ|yn+1-yn+1|¡Ü|xn+1-xn|¡Ü
£¼
£¨
£©£¬Òò´Ë¿ÉµÃ½áÂÛ£®
µãÆÀ£º±¾Ì⿼²éж¨Ò壬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
£¨2£©Ö¤Ã÷£ºÇø¼ä£¨-1£¬1£©ÉϵÄÈÎÒâÁ½¸öx1£¬x2£¬|f£¨x1£©-f£¨x2£©|=|x1+x2+k||x1-x2|£¬
Èôk¡Ý0£¬Ôòµ±x1£¬x2¡Ê£¨
Èôk£¼0£¬Ôòµ±x1£¬x2¡Ê£¨-1£¬-
¡à?k¡ÊR£¬f£¨x£©=x2+kx+1¶¼²»ÊÇÇø¼ä£¨-1£¬1£©ÉÏµÄÆ½»ºº¯Êý£»
£¨3£©Ö¤Ã÷£º¡ßy=sinxÊÇRÉϵġ°Æ½»ºº¯Êý¡±£¬
¡à|yn+1-yn+1|¡Ü|xn+1-xn|¡Ü
¡à|yn+1-y1|£¼
¡à|yn+1-y1|£¼1£®
·ÖÎö£º£¨1£©È¡x1=3£¬x2=1£¬Ôò|h£¨x1£©-h£¨x2£©|=4£¾|x1-x2|£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨2£©Çø¼ä£¨-1£¬1£©ÉϵÄÈÎÒâÁ½¸öx1£¬x2£¬|f£¨x1£©-f£¨x2£©|=|x1+x2+k||x1-x2|£¬·ÖÀàÌÖÂÛ£¬¼´¿ÉµÃµ½½áÂÛ£»
£¨3£©ÀûÓÃy=sinxÊÇRÉϵġ°Æ½»ºº¯Êý¡±£¬¿ÉµÃ|yn+1-yn+1|¡Ü|xn+1-xn|¡Ü
µãÆÀ£º±¾Ì⿼²éж¨Ò壬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿