题目内容

(2012•兰州模拟)已知点M是直线x=-
1
2
上的动点,F(
1
2
,0)
为定点,过点M且垂直于直线x=-
1
2
的直线和线段MF的垂直平分线相交于点P.
(1)求点P的轨迹方程;
(2)经过点Q(a,0)(a>0)且与x轴不垂直的直线l与点P的轨迹有两个不同交点A、B,若在x轴上存在点C,使得△ABC为正三角形,求实数a的取值范围.
分析:(1)由过点M且垂直于直线x=-
1
2
的直线和线段MF的垂直平分线相交于点P,可得|PF|=|PM|,利用抛物线的定义可得点P的轨迹是抛物线,从而求得方程;
(2)设直线l的方程与抛物线方程联立,确定AB中点的坐标,利用△ABC为正三角形,建立两个方程,即可求实数a的取值范围.
解答:解:(1)∵过点M且垂直于直线x=-
1
2
的直线和线段MF的垂直平分线相交于点P,∴|PF|=|PM|,
∴由抛物线的定义可得点P的轨迹C是以F为焦点,以直线x=-
1
2
为准线的抛物线,
∴点P的轨迹方程为y2=2x.
(2)设A(x1,y1),B(x2,y2),AB的中点为N(x0,y0),C(t,0),直线l的方程为x=my+a(m≠0)
与抛物线方程联立,消去x可得:y2-2my-2a=0
∴△=4m2+8a>0,y1+y2=2m,y1y2=-2a
∴y0=m,x0=m2+a
∵△ABC为正三角形,
∴NC⊥AB,NC=
3
2
AB

y0
x0-t
×
1
m
=-1
(x0-t)2+y02
=
3
2
(x1-x2)2+(y1-y2)2

∴t=m2+a+1,
(m2+a-t)2+m2
=
3
2
(m2+1)×4(m2+2a)

∴1+m2=3(m2+1)(m2+2a)
∴a=
1
6
-
m2
2

∵m≠0,a>0
∴0<a<
1
6

∴实数a的取值范围为(0,
1
6
).
点评:本题考查抛物线的定义,考查直线与抛物线的位置关系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网