题目内容

设函数f(x)的定义域为D,若存在非零实数l使得对于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),则称f(x)为M上的l高调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是


  1. A.
    [-1,1]
  2. B.
    (-1,1)
  3. C.
    [-2,2]
  4. D.
    (-2,2)
A
分析:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,画出函数图象,可得4≥3a2-(-a2)得-1≤a≤1.
解答:解:定义域为R的函数f(x)是奇函数,
当x≥0时,
f(x)=|x-a2|-a2=,的图象如图,
∵f(x)为R上的4高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),4大于等于区间长度3a2-(-a2),
∴4≥3a2-(-a2),∴-1≤a≤1,
故选A.
点评:考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网