题目内容

(本题满分15分)

已知直线方程为.

(Ⅰ)证明:直线恒过定点

(Ⅱ)若直线分别与轴、轴的负半轴交于两点,求△面积的最小值及此时直线的方程.

(Ⅰ)证明:(2+m)x+(1-2m)y+4-3m=0化为(x-2y-3)m=-2xy-4.   …3分

由得,

∴直线必过定点(-1,-2).                  …………………………………6分

(Ⅱ)解:设直线的斜率为kk<0),则其方程为y+2=k(x+1),

OA=|-1|,OB=| k-2 |,                       …………………………8分

SAOB=·OA·OB=|(-1)(k-2)|=|-|.          .………………………10分

k<0,∴-k>0,

SAOB=[-]=[4+(-)+(-k)]≥4.

当且仅当-=-k,即k=-2时取等号.                ………………………13分

∴△AOB的面积最小值是4,                      ……………………………14分

直线的方程为y+2=-2(x+1),即y+2x+4=0.             …………………15分

练习册系列答案
相关题目

((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网