题目内容
已知集合A={-1,a2+1,a2-3},B={a-3,a-1,a+1},若A∩B={-2}.求实数a的取值范围.
解:∵A∩B=-2
∴-2∈B
若a-3=-2则a=1此时A={-1,2,-2},B={2,-2,0}不符合题意
若a-1=-2则a=-1此时A={-1,2,-2},B={-4,-2,0}符合题意
若a+1=-2则a=-3此时A={-1,10,6},B={-4,-6,-2}不符合题意
综上所述:a=-1(12分)
分析:由A∩B=-2得-2∈B,分a-3=-2,a-1=-2,a+1=-2三种情况讨论,一定要注意元素的互异性.
点评:本题主要考查集合的交集及其运算,通过公共元素考查了分类讨论的思想.
∴-2∈B
若a-3=-2则a=1此时A={-1,2,-2},B={2,-2,0}不符合题意
若a-1=-2则a=-1此时A={-1,2,-2},B={-4,-2,0}符合题意
若a+1=-2则a=-3此时A={-1,10,6},B={-4,-6,-2}不符合题意
综上所述:a=-1(12分)
分析:由A∩B=-2得-2∈B,分a-3=-2,a-1=-2,a+1=-2三种情况讨论,一定要注意元素的互异性.
点评:本题主要考查集合的交集及其运算,通过公共元素考查了分类讨论的思想.
练习册系列答案
相关题目
已知集合A={1,2a},B={a,b},若A∩B={
},则A∪B为( )
| 1 |
| 2 |
A、{
| ||
B、{-1,
| ||
C、{1,
| ||
D、{-1,
|